BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 26695874)

  • 1. A Multi-RNAi Microsponge Platform for Simultaneous Controlled Delivery of Multiple Small Interfering RNAs.
    Roh YH; Deng JZ; Dreaden EC; Park JH; Yun DS; Shopsowitz KE; Hammond PT
    Angew Chem Int Ed Engl; 2016 Mar; 55(10):3347-51. PubMed ID: 26695874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A RNA nanotechnology platform for a simultaneous two-in-one siRNA delivery and its application in synergistic RNAi therapy.
    Jang M; Han HD; Ahn HJ
    Sci Rep; 2016 Aug; 6():32363. PubMed ID: 27562435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rolling Circle Transcription for the Self-Assembly of Multimeric RNAi Structures and Its Applications in Nanomedicine.
    Jang M; Ahn HJ
    Methods Mol Biol; 2017; 1632():65-74. PubMed ID: 28730432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled RNA interference microsponges for efficient siRNA delivery.
    Lee JB; Hong J; Bonner DK; Poon Z; Hammond PT
    Nat Mater; 2012 Feb; 11(4):316-22. PubMed ID: 22367004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung.
    Günther M; Lipka J; Malek A; Gutsch D; Kreyling W; Aigner A
    Eur J Pharm Biopharm; 2011 Apr; 77(3):438-49. PubMed ID: 21093588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient intracellular delivery and multiple-target gene silencing triggered by tripodal RNA based nanoparticles: a promising approach in liver-specific RNAi delivery.
    Sajeesh S; Lee TY; Kim JK; Son DS; Hong SW; Kim S; Yun WS; Kim S; Chang C; Li C; Lee DK
    J Control Release; 2014 Dec; 196():28-36. PubMed ID: 25251899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rolling circle transcription-based polymeric siRNA nanoparticles for tumor-targeted delivery.
    Lee JH; Ku SH; Kim MJ; Lee SJ; Kim HC; Kim K; Kim SH; Kwon IC
    J Control Release; 2017 Oct; 263():29-38. PubMed ID: 28373128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts.
    Grzelinski M; Urban-Klein B; Martens T; Lamszus K; Bakowsky U; Höbel S; Czubayko F; Aigner A
    Hum Gene Ther; 2006 Jul; 17(7):751-66. PubMed ID: 16839274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonviral in vivo delivery of therapeutic small interfering RNAs.
    Aigner A
    Curr Opin Mol Ther; 2007 Aug; 9(4):345-52. PubMed ID: 17694447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs.
    Aigner A
    J Biotechnol; 2006 Jun; 124(1):12-25. PubMed ID: 16413079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective inhibition of hepatitis B virus replication by small interfering RNAs expressed from human foamy virus vectors.
    Sun Y; Li Z; Li L; Li J; Liu X; Li W
    Int J Mol Med; 2007 Apr; 19(4):705-11. PubMed ID: 17334648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential and advances in RNAi therapy: chemical and structural modifications of siRNA molecules and use of biocompatible nanocarriers.
    Joo MK; Yhee JY; Kim SH; Kim K
    J Control Release; 2014 Nov; 193():113-21. PubMed ID: 24862319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of nanocarriers for the delivery of small interfering RNA.
    Kesharwani P; Gajbhiye V; Jain NK
    Biomaterials; 2012 Oct; 33(29):7138-50. PubMed ID: 22796160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanovehicle-based Small Interfering RNA (siRNA) Delivery for Therapeutic Purposes: A New Molecular Approach in Pharmacogenomics.
    Akhtari J; Tafazoli A; Mehrad-Majd H; Mahrooz A
    Curr Clin Pharmacol; 2018; 13(3):173-182. PubMed ID: 29992895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer assembled antisense DNA microsponge particles for efficient delivery of cancer therapeutics.
    Roh YH; Lee JB; Shopsowitz KE; Dreaden EC; Morton SW; Poon Z; Hong J; Yamin I; Bonner DK; Hammond PT
    ACS Nano; 2014 Oct; 8(10):9767-80. PubMed ID: 25198246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled RNAi nanoflowers via rolling circle transcription for aptamer-targeted siRNA delivery.
    Cheng H; Hong S; Wang Z; Sun N; Wang T; Zhang Y; Chen H; Pei R
    J Mater Chem B; 2018 Jul; 6(28):4638-4644. PubMed ID: 32254408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.
    DeVincenzo JP
    Early Hum Dev; 2009 Oct; 85(10 Suppl):S31-5. PubMed ID: 19833462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cationic liquid crystalline nanoparticles for the delivery of synthetic RNAi-based therapeutics.
    Gentile E; Oba T; Lin J; Shao R; Meng F; Cao X; Lin HY; Mourad M; Pataer A; Baladandayuthapani V; Cai D; Roth JA; Ji L
    Oncotarget; 2017 Jul; 8(29):48222-48239. PubMed ID: 28637023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-inspired materials in drug delivery: Exploring the role of pulmonary surfactant in siRNA inhalation therapy.
    De Backer L; Cerrada A; Pérez-Gil J; De Smedt SC; Raemdonck K
    J Control Release; 2015 Dec; 220(Pt B):642-50. PubMed ID: 26363301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of RNA interference-based therapeutics and application of multi-target small interfering RNAs.
    Li T; Wu M; Zhu YY; Chen J; Chen L
    Nucleic Acid Ther; 2014 Aug; 24(4):302-12. PubMed ID: 24796432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.