These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 26696008)
1. Bio-remediation of Pb and Cd polluted soils by switchgrass: A case study in India. Arora K; Sharma S; Monti A Int J Phytoremediation; 2016; 18(7):704-9. PubMed ID: 26696008 [TBL] [Abstract][Full Text] [Related]
2. Influence of endophytic root bacteria on the growth, cadmium tolerance and uptake of switchgrass (Panicum virgatum L.). Afzal S; Begum N; Zhao H; Fang Z; Lou L; Cai Q J Appl Microbiol; 2017 Aug; 123(2):498-510. PubMed ID: 28581636 [TBL] [Abstract][Full Text] [Related]
3. Phytoremediation of Cd and Pb interactive polluted soils by switchgrass ( Guo Z; Gao Y; Cao X; Jiang W; Liu X; Liu Q; Chen Z; Zhou W; Cui J; Wang Q Int J Phytoremediation; 2019; 21(14):1486-1496. PubMed ID: 31342773 [TBL] [Abstract][Full Text] [Related]
4. Phytoextraction of contaminated urban soils by Panicum virgatum L. enhanced with application of a plant growth regulator (BAP) and citric acid. Aderholt M; Vogelien DL; Koether M; Greipsson S Chemosphere; 2017 May; 175():85-96. PubMed ID: 28211339 [TBL] [Abstract][Full Text] [Related]
5. A study on the effects of lead, cadmium and phosphorus on the lead and cadmium uptake efficacy of Viola baoshanensis inoculated with arbuscular mycorrhizal fungi. Zhong WL; Li JT; Chen YT; Shu WS; Liao B J Environ Monit; 2012 Sep; 14(9):2497-504. PubMed ID: 22864990 [TBL] [Abstract][Full Text] [Related]
6. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils. Wang Q; Gu M; Ma X; Zhang H; Wang Y; Cui J; Gao W; Gui J Environ Sci Pollut Res Int; 2015 Nov; 22(21):16758-71. PubMed ID: 26092360 [TBL] [Abstract][Full Text] [Related]
7. Study of the potential of barnyard grass for the remediation of Cd- and Pb-contaminated soil. Xu J; Cai Q; Wang H; Liu X; Lv J; Yao D; Lu Y; Li W; Liu Y Environ Monit Assess; 2017 May; 189(5):224. PubMed ID: 28432507 [TBL] [Abstract][Full Text] [Related]
8. Contribution of AM inoculation and cattle manure to lead and cadmium phytoremediation by tobacco plants. Wang FY; Shi ZY; Xu XF; Wang XG; Li YJ Environ Sci Process Impacts; 2013 Apr; 15(4):794-801. PubMed ID: 23407649 [TBL] [Abstract][Full Text] [Related]
9. Mycorrhizal limonium sinuatum (L.) mill. Enhances accumulation of lead and cadmium. Sheikh-Assadi M; Khandan-Mirkohi A; Alemardan A; Moreno-Jiménez E Int J Phytoremediation; 2015; 17(1-6):556-62. PubMed ID: 25747242 [TBL] [Abstract][Full Text] [Related]
10. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead- contaminated soil by vetiver grass. Bahraminia M; Zarei M; Ronaghi A; Ghasemi-Fasaei R Int J Phytoremediation; 2016; 18(7):730-7. PubMed ID: 26709443 [TBL] [Abstract][Full Text] [Related]
11. Induced Phytoextraction of Lead Through Chemical Manipulation of Switchgrass and Corn; Role of Iron Supplement. Johnson DM; Deocampo DM; El-Mayas H; Greipsson S Int J Phytoremediation; 2015; 17(12):1192-203. PubMed ID: 25946419 [TBL] [Abstract][Full Text] [Related]
12. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. Hassan SE; Hijri M; St-Arnaud M N Biotechnol; 2013 Sep; 30(6):780-7. PubMed ID: 23876814 [TBL] [Abstract][Full Text] [Related]
13. Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge). Kadukova J; Manousaki E; Kalogerakis N Int J Phytoremediation; 2008; 10(1):31-46. PubMed ID: 18709930 [TBL] [Abstract][Full Text] [Related]
14. Effect of Arbuscular Mycorrhizal Fungi On Yield and Phytoremediation Performance of Pot Marigold (Calendula officinalis L.) Under Heavy Metals Stress. Tabrizi L; Mohammadi S; Delshad M; Moteshare Zadeh B Int J Phytoremediation; 2015; 17(12):1244-52. PubMed ID: 26237494 [TBL] [Abstract][Full Text] [Related]
15. Effect of mycorrhizal fungi on the phytoremediation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Thompson PL; Polebitski AS Environ Sci Technol; 2010 Feb; 44(3):1112-5. PubMed ID: 20039668 [TBL] [Abstract][Full Text] [Related]
16. Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. de Souza Costa ET; Guilherme LR; de Melo EE; Ribeiro BT; Dos Santos B Inácio E; da Costa Severiano E; Faquin V; Hale BA Biol Trace Elem Res; 2012 Jan; 145(1):93-100. PubMed ID: 21826609 [TBL] [Abstract][Full Text] [Related]
17. Capability of Secale montanum trusted for phytoremediation of lead and cadmium in soils amended with nano-silica and municipal solid waste compost. Moameri M; Abbasi Khalaki M Environ Sci Pollut Res Int; 2019 Aug; 26(24):24315-24322. PubMed ID: 29134519 [TBL] [Abstract][Full Text] [Related]
18. Phytoremediation of Polycyclic Aromatic Hydrocarbons in Soils Artificially Polluted Using Plant-Associated-Endophytic Bacteria and Dactylis glomerata as the Bioremediation Plant. Gałązka A; Gałązka R Pol J Microbiol; 2015; 64(3):241-52. PubMed ID: 26638532 [TBL] [Abstract][Full Text] [Related]
19. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Jing YX; Yan JL; He HD; Yang DJ; Xiao L; Zhong T; Yuan M; Cai XD; Li SB Int J Phytoremediation; 2014; 16(4):321-33. PubMed ID: 24912234 [TBL] [Abstract][Full Text] [Related]
20. Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss: two contrasting ecotypes. Manousaki E; Galanaki K; Papadimitriou L; Kalogerakis N Int J Phytoremediation; 2014; 16(7-12):755-69. PubMed ID: 24933883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]