These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26696073)

  • 21. Polymer dynamics in responsive microgels: influence of cononsolvency and microgel architecture.
    Scherzinger C; Holderer O; Richter D; Richtering W
    Phys Chem Chem Phys; 2012 Feb; 14(8):2762-8. PubMed ID: 22252036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of particle softness on shear thickening of microgel suspensions.
    Zhou Z; Hollingsworth JV; Hong S; Wei G; Shi Y; Lu X; Cheng H; Han CC
    Soft Matter; 2014 Sep; 10(33):6286-93. PubMed ID: 25028061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanics at the glass-to-gel transition of thermoresponsive microgel suspensions.
    Appel J; Fölker B; Sprakel J
    Soft Matter; 2016 Mar; 12(9):2515-22. PubMed ID: 26843322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase transition behaviors of poly(N-isopropylacrylamide) microgels induced by tannic acid.
    Chen G; Niu CH; Zhou MY; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):168-75. PubMed ID: 20018293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels.
    Meid J; Friedrich T; Tieke B; Lindner P; Richtering W
    Phys Chem Chem Phys; 2011 Feb; 13(8):3039-47. PubMed ID: 20882241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural properties of thermoresponsive poly(N-isopropylacrylamide)-poly(ethyleneglycol) microgels.
    Clara-Rahola J; Fernandez-Nieves A; Sierra-Martin B; South AB; Lyon LA; Kohlbrecher J; Fernandez Barbero A
    J Chem Phys; 2012 Jun; 136(21):214903. PubMed ID: 22697568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unusual temperature-induced swelling of ionizable poly(N-isopropylacrylamide)-based microgels: experimental and theoretical insights into its molecular origin.
    Giussi JM; Velasco MI; Longo GS; Acosta RH; Azzaroni O
    Soft Matter; 2015 Dec; 11(45):8879-86. PubMed ID: 26400774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between particle elasticity, glass fragility, and structural relaxation in dense microgel suspensions.
    Seekell Iii RP; Sarangapani PS; Zhang Z; Zhu Y
    Soft Matter; 2015 Jul; 11(27):5485-91. PubMed ID: 26061613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neutron- and light-scattering studies of the liquid-to-glass and glass-to-glass transitions in dense copolymer micellar solutions.
    Chen WR; Mallamace F; Glinka CJ; Fratini E; Chen SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041402. PubMed ID: 14682940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior.
    Schmitt C; Hadj Henni A; Cloutier G
    J Biomech; 2011 Feb; 44(4):622-9. PubMed ID: 21122863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermally induced phase transition of glucose-sensitive core-shell microgels.
    Luo Q; Liu P; Guan Y; Zhang Y
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):760-7. PubMed ID: 20356278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural ordering and phase behavior of charged microgels.
    Mohanty PS; Richtering W
    J Phys Chem B; 2008 Nov; 112(47):14692-7. PubMed ID: 18950219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poly(N-isopropylacrylamide) microgels at the oil-water interface: temperature effect.
    Li Z; Richtering W; Ngai T
    Soft Matter; 2014 Sep; 10(33):6182-91. PubMed ID: 25010011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature-Induced Assembly of Monodisperse, Covalently Cross-Linked, and Degradable Poly(N-isopropylacrylamide) Microgels Based on Oligomeric Precursors.
    Sivakumaran D; Mueller E; Hoare T
    Langmuir; 2015 Jun; 31(21):5767-78. PubMed ID: 25977976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermoresponsive polymer-stabilized silver nanoparticles.
    Guo L; Nie J; Du B; Peng Z; Tesche B; Kleinermanns K
    J Colloid Interface Sci; 2008 Mar; 319(1):175-81. PubMed ID: 18068715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Behavior of temperature-responsive copolymer microgels at the oil/water interface.
    Wu Y; Wiese S; Balaceanu A; Richtering W; Pich A
    Langmuir; 2014 Jul; 30(26):7660-9. PubMed ID: 24926817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Schizophrenic core-shell microgels: thermoregulated core and shell swelling/collapse by combining UCST and LCST phase transitions.
    Yin J; Hu J; Zhang G; Liu S
    Langmuir; 2014 Mar; 30(9):2551-8. PubMed ID: 24555801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rheological behavior of high-concentration sodium caseinate dispersions.
    Loveday SM; Rao MA; Creamer LK; Singh H
    J Food Sci; 2010 Mar; 75(2):N30-5. PubMed ID: 20492251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flocculation behavior of temperature-sensitive poly(N-isopropylacrylamide) microgels containing polar side chains with -OH groups.
    Ma X; Tang X
    J Colloid Interface Sci; 2006 Jul; 299(1):217-24. PubMed ID: 16500668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glass transition of dense fluids of hard and compressible spheres.
    Berthier L; Witten TA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021502. PubMed ID: 19792128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.