These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 26696368)
1. In Vivo Autofluorescence Imaging of Tumor Heterogeneity in Response to Treatment. Shah AT; Diggins KE; Walsh AJ; Irish JM; Skala MC Neoplasia; 2015 Dec; 17(12):862-870. PubMed ID: 26696368 [TBL] [Abstract][Full Text] [Related]
2. Metabolic cofactors NAD(P)H and FAD as potential indicators of cancer cell response to chemotherapy with paclitaxel. Lukina MM; Dudenkova VV; Ignatova NI; Druzhkova IN; Shimolina LE; Zagaynova EV; Shirmanova MV Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1693-1700. PubMed ID: 29719197 [TBL] [Abstract][Full Text] [Related]
3. Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma. Shah AT; Demory Beckler M; Walsh AJ; Jones WP; Pohlmann PR; Skala MC PLoS One; 2014; 9(3):e90746. PubMed ID: 24595244 [TBL] [Abstract][Full Text] [Related]
4. Two-photon FLIM of NAD(P)H and FAD in mesenchymal stem cells undergoing either osteogenic or chondrogenic differentiation. Meleshina AV; Dudenkova VV; Bystrova AS; Kuznetsova DS; Shirmanova MV; Zagaynova EV Stem Cell Res Ther; 2017 Jan; 8(1):15. PubMed ID: 28129796 [TBL] [Abstract][Full Text] [Related]
5. Autofluorescence imaging identifies tumor cell-cycle status on a single-cell level. Heaster TM; Walsh AJ; Zhao Y; Hiebert SW; Skala MC J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28485124 [TBL] [Abstract][Full Text] [Related]
6. Autofluorescence Imaging to Evaluate Cellular Metabolism. Theodossiou A; Hu L; Wang N; Nguyen U; Walsh AJ J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842243 [TBL] [Abstract][Full Text] [Related]
7. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength. Cao R; Wallrabe H; Periasamy A J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048 [TBL] [Abstract][Full Text] [Related]
9. In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish. Miskolci V; Tweed KE; Lasarev MR; Britt EC; Walsh AJ; Zimmerman LJ; McDougal CE; Cronan MR; Fan J; Sauer JD; Skala MC; Huttenlocher A Elife; 2022 Feb; 11():. PubMed ID: 35200139 [TBL] [Abstract][Full Text] [Related]
10. Optical changes in THP-1 macrophage metabolism in response to pro- and anti-inflammatory stimuli reported by label-free two-photon imaging. Smokelin I; Mizzoni C; Erndt-Marino J; Kaplan D; Georgakoudi I J Biomed Opt; 2020 Jan; 25(1):1-14. PubMed ID: 31953928 [TBL] [Abstract][Full Text] [Related]
11. Autofluorescence Imaging of 3D Tumor-Macrophage Microscale Cultures Resolves Spatial and Temporal Dynamics of Macrophage Metabolism. Heaster TM; Humayun M; Yu J; Beebe DJ; Skala MC Cancer Res; 2020 Dec; 80(23):5408-5423. PubMed ID: 33093167 [TBL] [Abstract][Full Text] [Related]
12. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H. Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477 [TBL] [Abstract][Full Text] [Related]
13. Investigation of Mitochondrial Metabolic Response to Doxorubicin in Prostate Cancer Cells: An NADH, FAD and Tryptophan FLIM Assay. Alam SR; Wallrabe H; Svindrych Z; Chaudhary AK; Christopher KG; Chandra D; Periasamy A Sci Rep; 2017 Sep; 7(1):10451. PubMed ID: 28874842 [TBL] [Abstract][Full Text] [Related]
14. Intravital Metabolic Autofluorescence Imaging Captures Macrophage Heterogeneity Across Normal and Cancerous Tissue. Heaster TM; Heaton AR; Sondel PM; Skala MC Front Bioeng Biotechnol; 2021; 9():644648. PubMed ID: 33959597 [TBL] [Abstract][Full Text] [Related]
15. Label-Free Optical Metabolic Imaging in Cells and Tissues. Georgakoudi I; Quinn KP Annu Rev Biomed Eng; 2023 Jun; 25():413-443. PubMed ID: 37104650 [TBL] [Abstract][Full Text] [Related]
16. Autofluorescence flow sorting of breast cancer cell metabolism. Shah AT; Cannon TM; Higginbotham JN; Coffey RJ; Skala MC J Biophotonics; 2017 Aug; 10(8):1026-1033. PubMed ID: 27730745 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous assessment of NAD(P)H and flavins with multispectral fluorescence lifetime imaging microscopy at a single excitation wavelength of 750 nm. Yakimov B; Komarova A; Nikonova E; Mozherov A; Shimolina L; Shirmanova M; Becker W; Shirshin E; Shcheslavskiy V J Biomed Opt; 2024 Oct; 29(10):106501. PubMed ID: 39351138 [TBL] [Abstract][Full Text] [Related]
18. Endogenous Two-Photon Excited Fluorescence Imaging Characterizes Neuron and Astrocyte Metabolic Responses to Manganese Toxicity. Stuntz E; Gong Y; Sood D; Liaudanskaya V; Pouli D; Quinn KP; Alonzo C; Liu Z; Kaplan DL; Georgakoudi I Sci Rep; 2017 Apr; 7(1):1041. PubMed ID: 28432298 [TBL] [Abstract][Full Text] [Related]
19. Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM. Wallrabe H; Svindrych Z; Alam SR; Siller KH; Wang T; Kashatus D; Hu S; Periasamy A Sci Rep; 2018 Jan; 8(1):79. PubMed ID: 29311591 [TBL] [Abstract][Full Text] [Related]
20. In vivo metabolic and SHG imaging for monitoring of tumor response to chemotherapy. Lukina MM; Dudenkova VV; Shimolina LE; Snopova LB; Zagaynova EV; Shirmanova MV Cytometry A; 2019 Jan; 95(1):47-55. PubMed ID: 30329217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]