These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 26696716)
1. Influence of exercise intensity on atrophied quadriceps muscle in the rat. Tanaka S; Obatake T; Hoshino K; Nakagawa T J Phys Ther Sci; 2015 Nov; 27(11):3445-50. PubMed ID: 26696716 [TBL] [Abstract][Full Text] [Related]
2. Development of Connective Tissue Area Increases by Initial Impact With High-Intensity Exercise After Reloading in Rat Soleus Muscle. Tanaka S; Inaoka PT; Madokoro S; Yamazaki T Am J Phys Med Rehabil; 2023 Jul; 102(7):588-596. PubMed ID: 36730065 [TBL] [Abstract][Full Text] [Related]
3. Morphological changes in rat hindlimb muscle fibres during recovery from disuse atrophy. Itai Y; Kariya Y; Hoshino Y Acta Physiol Scand; 2004 Jun; 181(2):217-24. PubMed ID: 15180794 [TBL] [Abstract][Full Text] [Related]
4. Influence of fixed muscle length and contractile properties on atrophy and subsequent recovery in the rat soleus and plantaris muscles. Fujita N; Arakawa T; Matsubara T; Ando H; Miki A Arch Histol Cytol; 2009; 72(3):151-63. PubMed ID: 20513978 [TBL] [Abstract][Full Text] [Related]
5. Quadriceps femoris muscle resistance to fatigue using an electrically elicited fatigue test following intense endurance exercise training. Sinacore DR; Jacobson RB; Delitto A Phys Ther; 1994 Oct; 74(10):930-9; discussion 939-42. PubMed ID: 8090844 [TBL] [Abstract][Full Text] [Related]
6. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Campos GE; Luecke TJ; Wendeln HK; Toma K; Hagerman FC; Murray TF; Ragg KE; Ratamess NA; Kraemer WJ; Staron RS Eur J Appl Physiol; 2002 Nov; 88(1-2):50-60. PubMed ID: 12436270 [TBL] [Abstract][Full Text] [Related]
7. Effects of hindlimb suspension and reloading on gastrocnemius and soleus muscle mass and function in geriatric mice. Oliveira JRS; Mohamed JS; Myers MJ; Brooks MJ; Alway SE Exp Gerontol; 2019 Jan; 115():19-31. PubMed ID: 30448397 [TBL] [Abstract][Full Text] [Related]
8. Nucleoprotein supplementation enhances the recovery of rat soleus mass with reloading after hindlimb unloading-induced atrophy via myonuclei accretion and increased protein synthesis. Nakanishi R; Hirayama Y; Tanaka M; Maeshige N; Kondo H; Ishihara A; Roy RR; Fujino H Nutr Res; 2016 Dec; 36(12):1335-1344. PubMed ID: 27866827 [TBL] [Abstract][Full Text] [Related]
9. Comparison of muscle activation and kinematics during free-weight back squats with different loads. van den Tillaar R; Andersen V; Saeterbakken AH PLoS One; 2019; 14(5):e0217044. PubMed ID: 31095625 [TBL] [Abstract][Full Text] [Related]
10. Increased vulnerability to eccentric exercise-induced dysfunction and muscle injury after concentric training. Ploutz-Snyder LL; Tesch PA; Dudley GA Arch Phys Med Rehabil; 1998 Jan; 79(1):58-61. PubMed ID: 9440419 [TBL] [Abstract][Full Text] [Related]
11. The effects of high-intensity exercise on skeletal muscle neutrophil myeloperoxidase in untrained and trained rats. Morozov VI; Tsyplenkov PV; Golberg ND; Kalinski MI Eur J Appl Physiol; 2006 Aug; 97(6):716-22. PubMed ID: 16791601 [TBL] [Abstract][Full Text] [Related]
12. Vulnerability to dysfunction and muscle injury after unloading. Ploutz-Snyder LL; Tesch PA; Hather BM; Dudley GA Arch Phys Med Rehabil; 1996 Aug; 77(8):773-7. PubMed ID: 8702370 [TBL] [Abstract][Full Text] [Related]
13. Quadriceps muscle atrophy after anterior cruciate ligament transection involves increased mRNA levels of atrogin-1, muscle ring finger 1, and myostatin. Delfino GB; Peviani SM; Durigan JL; Russo TL; Baptista IL; Ferretti M; Moriscot AS; Salvini TF Am J Phys Med Rehabil; 2013 May; 92(5):411-9. PubMed ID: 22854904 [TBL] [Abstract][Full Text] [Related]
14. Changes in exercises are more effective than in loading schemes to improve muscle strength. Fonseca RM; Roschel H; Tricoli V; de Souza EO; Wilson JM; Laurentino GC; Aihara AY; de Souza Leão AR; Ugrinowitsch C J Strength Cond Res; 2014 Nov; 28(11):3085-92. PubMed ID: 24832974 [TBL] [Abstract][Full Text] [Related]
15. Effect of resistance training on muscle use during exercise. Ploutz LL; Tesch PA; Biro RL; Dudley GA J Appl Physiol (1985); 1994 Apr; 76(4):1675-81. PubMed ID: 8045847 [TBL] [Abstract][Full Text] [Related]
16. Effect of Low-Volume High-Intensity Interval Exercise and Continuous Exercise on Delayed-Onset Muscle Soreness in Untrained Healthy Males. Farias Junior LF; Browne RAV; Frazão DT; Dantas TCB; Silva PHM; Freitas RPA; Aoki MS; Costa EC J Strength Cond Res; 2019 Mar; 33(3):774-782. PubMed ID: 28614163 [TBL] [Abstract][Full Text] [Related]
17. Specificity of resistance training responses in neck muscle size and strength. Conley MS; Stone MH; Nimmons M; Dudley GA Eur J Appl Physiol Occup Physiol; 1997; 75(5):443-8. PubMed ID: 9189733 [TBL] [Abstract][Full Text] [Related]
18. Use of electrical stimulation to enhance recovery of quadriceps femoris muscle force production in patients following anterior cruciate ligament reconstruction. Snyder-Mackler L; Delitto A; Stralka SW; Bailey SL Phys Ther; 1994 Oct; 74(10):901-7. PubMed ID: 8090841 [TBL] [Abstract][Full Text] [Related]
19. Agonist muscle adaptation accompanied by antagonist muscle atrophy in the hindlimb of mice following stretch-shortening contraction training. Rader EP; Naimo MA; Ensey J; Baker BA BMC Musculoskelet Disord; 2017 Feb; 18(1):60. PubMed ID: 28148306 [TBL] [Abstract][Full Text] [Related]
20. Quadriceps muscle use in the flywheel and barbell squat. Norrbrand L; Tous-Fajardo J; Vargas R; Tesch PA Aviat Space Environ Med; 2011 Jan; 82(1):13-9. PubMed ID: 21235100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]