These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26697759)

  • 1. Brighter Red Fluorescent Proteins by Rational Design of Triple-Decker Motif.
    Pandelieva AT; Baran MJ; Calderini GF; McCann JL; Tremblay V; Sarvan S; Davey JA; Couture JF; Chica RA
    ACS Chem Biol; 2016 Feb; 11(2):508-17. PubMed ID: 26697759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Design of the Triple-Decker Motif in Red Fluorescent Proteins.
    Khrenova MG; Polyakov IV; Grigorenko BL; Krylov AI; Nemukhin AV
    J Phys Chem B; 2017 Nov; 121(47):10602-10609. PubMed ID: 29090574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of a Brighter Variant of the FusionRed Fluorescent Protein Using Lifetime Flow Cytometry and Structure-Guided Mutations.
    Mukherjee S; Hung ST; Douglas N; Manna P; Thomas C; Ekrem A; Palmer AE; Jimenez R
    Biochemistry; 2020 Oct; 59(39):3669-3682. PubMed ID: 32914619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of bright monomeric red fluorescent proteins
    Legault S; Fraser-Halberg DP; McAnelly RL; Eason MG; Thompson MC; Chica RA
    Chem Sci; 2022 Feb; 13(5):1408-1418. PubMed ID: 35222925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monomerization of far-red fluorescent proteins.
    Wannier TM; Gillespie SK; Hutchins N; McIsaac RS; Wu SY; Shen Y; Campbell RE; Brown KS; Mayo SL
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):E11294-E11301. PubMed ID: 30425172
    [No Abstract]   [Full Text] [Related]  

  • 6. Recovery of red fluorescent protein chromophore maturation deficiency through rational design.
    Moore MM; Oteng-Pabi SK; Pandelieva AT; Mayo SL; Chica RA
    PLoS One; 2012; 7(12):e52463. PubMed ID: 23285050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA mimics of red fluorescent proteins (RFP) based on G-quadruplex-confined synthetic RFP chromophores.
    Feng G; Luo C; Yi H; Yuan L; Lin B; Luo X; Hu X; Wang H; Lei C; Nie Z; Yao S
    Nucleic Acids Res; 2017 Oct; 45(18):10380-10392. PubMed ID: 28981852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trans-cis isomerization is responsible for the red-shifted fluorescence in variants of the red fluorescent protein eqFP611.
    Nienhaus K; Nar H; Heilker R; Wiedenmann J; Nienhaus GU
    J Am Chem Soc; 2008 Sep; 130(38):12578-9. PubMed ID: 18761441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins.
    Verkhusha VV; Lukyanov KA
    Nat Biotechnol; 2004 Mar; 22(3):289-96. PubMed ID: 14990950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity.
    Shen Y; Chen Y; Wu J; Shaner NC; Campbell RE
    PLoS One; 2017; 12(2):e0171257. PubMed ID: 28241009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isomerization mechanism of the HcRed fluorescent protein chromophore.
    Sun Q; Li Z; Lan Z; Pfisterer C; Doerr M; Fischer S; Smith SC; Thiel W
    Phys Chem Chem Phys; 2012 Aug; 14(32):11413-24. PubMed ID: 22801745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiationless decay of red fluorescent protein chromophore models via twisted intramolecular charge-transfer states.
    Olsen S; Smith SC
    J Am Chem Soc; 2007 Feb; 129(7):2054-65. PubMed ID: 17253685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational strategy for tuning spectral properties of red fluorescent proteins.
    Topol I; Collins J; Savitsky A; Nemukhin A
    Biophys Chem; 2011 Oct; 158(2-3):91-5. PubMed ID: 21652139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus.
    Pletneva N; Pletnev V; Tikhonova T; Pakhomov AA; Popov V; Martynov VI; Wlodawer A; Dauter Z; Pletnev S
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1082-93. PubMed ID: 17881826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-guided rational design of red fluorescent proteins: towards designer genetically-encoded fluorophores.
    Eason MG; Damry AM; Chica RA
    Curr Opin Struct Biol; 2017 Aug; 45():91-99. PubMed ID: 28038355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conical Intersection Accessibility Dictates Brightness in Red Fluorescent Proteins.
    Pieri E; Walker AR; Zhu M; Martínez TJ
    J Am Chem Soc; 2024 Jul; 146(26):17646-17658. PubMed ID: 38885641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation.
    Tubbs JL; Tainer JA; Getzoff ED
    Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of longer emission wavelength red fluorescent proteins using computationally designed libraries.
    Chica RA; Moore MM; Allen BD; Mayo SL
    Proc Natl Acad Sci U S A; 2010 Nov; 107(47):20257-62. PubMed ID: 21059931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of a thiazoline-containing chromophore in an orange fluorescent protein, monomeric Kusabira Orange.
    Kikuchi A; Fukumura E; Karasawa S; Mizuno H; Miyawaki A; Shiro Y
    Biochemistry; 2008 Nov; 47(44):11573-80. PubMed ID: 18844376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring color tuning strategies in red fluorescent proteins.
    Hense A; Nienhaus K; Nienhaus GU
    Photochem Photobiol Sci; 2015 Feb; 14(2):200-12. PubMed ID: 25597270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.