These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1096 related articles for article (PubMed ID: 26698091)
1. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle. Hassani S; Saatchi M; Fernando RL; Garrick DJ Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091 [TBL] [Abstract][Full Text] [Related]
2. Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle. van Binsbergen R; Calus MP; Bink MC; van Eeuwijk FA; Schrooten C; Veerkamp RF Genet Sel Evol; 2015 Sep; 47(1):71. PubMed ID: 26381777 [TBL] [Abstract][Full Text] [Related]
4. Impact of QTL minor allele frequency on genomic evaluation using real genotype data and simulated phenotypes in Japanese Black cattle. Uemoto Y; Sasaki S; Kojima T; Sugimoto Y; Watanabe T BMC Genet; 2015 Nov; 16():134. PubMed ID: 26586567 [TBL] [Abstract][Full Text] [Related]
5. Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes. Kizilkaya K; Fernando RL; Garrick DJ J Anim Sci; 2010 Feb; 88(2):544-51. PubMed ID: 19820059 [TBL] [Abstract][Full Text] [Related]
6. Using selection index theory to estimate consistency of multi-locus linkage disequilibrium across populations. Wientjes YC; Veerkamp RF; Calus MP BMC Genet; 2015 Jul; 16():87. PubMed ID: 26187501 [TBL] [Abstract][Full Text] [Related]
7. Impact of genotype imputation on the performance of GBLUP and Bayesian methods for genomic prediction. Chen L; Li C; Sargolzaei M; Schenkel F PLoS One; 2014; 9(7):e101544. PubMed ID: 25025158 [TBL] [Abstract][Full Text] [Related]
8. Impact of QTL properties on the accuracy of multi-breed genomic prediction. Wientjes YC; Calus MP; Goddard ME; Hayes BJ Genet Sel Evol; 2015 May; 47(1):42. PubMed ID: 25951906 [TBL] [Abstract][Full Text] [Related]
9. Genomic predictions for economically important traits in Brazilian Braford and Hereford beef cattle using true and imputed genotypes. Piccoli ML; Brito LF; Braccini J; Cardoso FF; Sargolzaei M; Schenkel FS BMC Genet; 2017 Jan; 18(1):2. PubMed ID: 28100165 [TBL] [Abstract][Full Text] [Related]
10. A nested mixture model for genomic prediction using whole-genome SNP genotypes. Zeng J; Garrick D; Dekkers J; Fernando R PLoS One; 2018; 13(3):e0194683. PubMed ID: 29561877 [TBL] [Abstract][Full Text] [Related]
11. A multi-trait Bayesian method for mapping QTL and genomic prediction. Kemper KE; Bowman PJ; Hayes BJ; Visscher PM; Goddard ME Genet Sel Evol; 2018 Mar; 50(1):10. PubMed ID: 29571285 [TBL] [Abstract][Full Text] [Related]
12. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population. Ma P; Lund MS; Aamand GP; Su G J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255 [TBL] [Abstract][Full Text] [Related]
13. Contributions of linkage disequilibrium and co-segregation information to the accuracy of genomic prediction. Sun X; Fernando R; Dekkers J Genet Sel Evol; 2016 Oct; 48(1):77. PubMed ID: 27729012 [TBL] [Abstract][Full Text] [Related]
14. Design of a low-density SNP chip for the main Australian sheep breeds and its effect on imputation and genomic prediction accuracy. Bolormaa S; Gore K; van der Werf JH; Hayes BJ; Daetwyler HD Anim Genet; 2015 Oct; 46(5):544-56. PubMed ID: 26360638 [TBL] [Abstract][Full Text] [Related]
15. Accuracy of imputation to whole-genome sequence data in Holstein Friesian cattle. van Binsbergen R; Bink MC; Calus MP; van Eeuwijk FA; Hayes BJ; Hulsegge I; Veerkamp RF Genet Sel Evol; 2014 Jul; 46(1):41. PubMed ID: 25022768 [TBL] [Abstract][Full Text] [Related]
16. Effects of number of training generations on genomic prediction for various traits in a layer chicken population. Weng Z; Wolc A; Shen X; Fernando RL; Dekkers JC; Arango J; Settar P; Fulton JE; O'Sullivan NP; Garrick DJ Genet Sel Evol; 2016 Mar; 48():22. PubMed ID: 26992471 [TBL] [Abstract][Full Text] [Related]
17. Genomic prediction ability for beef fatty acid profile in Nelore cattle using different pseudo-phenotypes. Chiaia HLJ; Peripolli E; de Oliveira Silva RM; Feitosa FLB; de Lemos MVA; Berton MP; Olivieri BF; Espigolan R; Tonussi RL; Gordo DGM; de Albuquerque LG; de Oliveira HN; Ferrinho AM; Mueller LF; Kluska S; Tonhati H; Pereira ASC; Aguilar I; Baldi F J Appl Genet; 2018 Nov; 59(4):493-501. PubMed ID: 30251238 [TBL] [Abstract][Full Text] [Related]
18. Reduction in accuracy of genomic prediction for ordered categorical data compared to continuous observations. Kizilkaya K; Fernando RL; Garrick DJ Genet Sel Evol; 2014 Jun; 46(1):37. PubMed ID: 24912924 [TBL] [Abstract][Full Text] [Related]
19. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction. Brøndum RF; Su G; Janss L; Sahana G; Guldbrandtsen B; Boichard D; Lund MS J Dairy Sci; 2015 Jun; 98(6):4107-16. PubMed ID: 25892697 [TBL] [Abstract][Full Text] [Related]
20. Genetic and genomic basis of antibody response to porcine reproductive and respiratory syndrome (PRRS) in gilts and sows. Serão NV; Kemp RA; Mote BE; Willson P; Harding JC; Bishop SC; Plastow GS; Dekkers JC Genet Sel Evol; 2016 Jul; 48(1):51. PubMed ID: 27417876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]