BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26698217)

  • 1. Cathepsin D and its newly identified transport receptor SEZ6L2 can modulate neurite outgrowth.
    Boonen M; Staudt C; Gilis F; Oorschot V; Klumperman J; Jadot M
    J Cell Sci; 2016 Feb; 129(3):557-68. PubMed ID: 26698217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated mRNA expression and defective processing of cathepsin D in HeLa cells lacking the mannose 6-phosphate pathway.
    Liu L; Doray B
    FEBS Open Bio; 2021 Jun; 11(6):1695-1703. PubMed ID: 33932147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mice lacking mannose 6-phosphate uncovering enzyme activity have a milder phenotype than mice deficient for N-acetylglucosamine-1-phosphotransferase activity.
    Boonen M; Vogel P; Platt KA; Dahms N; Kornfeld S
    Mol Biol Cell; 2009 Oct; 20(20):4381-9. PubMed ID: 19710420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role of GCC88 in the retrograde transport of CI-M6PR and the maintenance of lysosomal activity.
    Cui Y; Yang Z; Teasdale RD
    Cell Biol Int; 2019 Nov; 43(11):1234-1244. PubMed ID: 30791178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endolysosomal transport of newly-synthesized cathepsin D in a sucrose model of lysosomal storage.
    Hamer I; Jadot M
    Exp Cell Res; 2005 Oct; 309(2):284-95. PubMed ID: 16055118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cathepsin B inhibition blocks neurite outgrowth in cultured neurons by regulating lysosomal trafficking and remodeling.
    Jiang M; Meng J; Zeng F; Qing H; Hook G; Hook V; Wu Z; Ni J
    J Neurochem; 2020 Nov; 155(3):300-312. PubMed ID: 32330298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of the Man-6-P targeting pathway in mice impairs osteoclast secretory lysosome biogenesis.
    van Meel E; Boonen M; Zhao H; Oorschot V; Ross FP; Kornfeld S; Klumperman J
    Traffic; 2011 Jul; 12(7):912-24. PubMed ID: 21466643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mannose 6-phosphate-independent targeting of lysosomal enzymes in I-cell disease B lymphoblasts.
    Glickman JN; Kornfeld S
    J Cell Biol; 1993 Oct; 123(1):99-108. PubMed ID: 8408210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mannose 6-phosphate-independent Lysosomal Sorting of LIMP-2.
    Blanz J; Zunke F; Markmann S; Damme M; Braulke T; Saftig P; Schwake M
    Traffic; 2015 Oct; 16(10):1127-36. PubMed ID: 26219725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of the three GGA genes in HeLa cells partially compromises lysosomal enzyme sorting.
    Doray B; Liu L; Lee WS; Jennings BC; Kornfeld S
    FEBS Open Bio; 2021 Feb; 11(2):367-374. PubMed ID: 33206455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysosomal enzyme phosphorylation. I. Protein recognition determinants in both lobes of procathepsin D mediate its interaction with UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase.
    Baranski TJ; Cantor AB; Kornfeld S
    J Biol Chem; 1992 Nov; 267(32):23342-8. PubMed ID: 1331081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the minimal lysosomal enzyme recognition domain in cathepsin D.
    Steet R; Lee WS; Kornfeld S
    J Biol Chem; 2005 Sep; 280(39):33318-23. PubMed ID: 16081416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sez6l2 regulates phosphorylation of ADD and neuritogenesis.
    Yaguchi H; Yabe I; Takahashi H; Watanabe M; Nomura T; Kano T; Matsumoto M; Nakayama KI; Watanabe M; Hatakeyama S
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):234-241. PubMed ID: 29032200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View.
    Staudt C; Puissant E; Boonen M
    Int J Mol Sci; 2016 Dec; 18(1):. PubMed ID: 28036022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LIM kinase 1: evidence for a role in the regulation of intracellular vesicle trafficking of lysosomes and endosomes in human breast cancer cells.
    Nishimura Y; Yoshioka K; Bernard O; Himeno M; Itoh K
    Eur J Cell Biol; 2004 Aug; 83(7):369-80. PubMed ID: 15503860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of UDP-N-acetylglucosamine-phosphotransferase-binding sites on the lysosomal proteases, cathepsins A, B, and D.
    Lukong KE; Elsliger MA; Mort JS; Potier M; Pshezhetsky AV
    Biochemistry; 1999 Jan; 38(1):73-80. PubMed ID: 9890884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sortilin mediates the lysosomal targeting of cathepsins D and H.
    Canuel M; Korkidakis A; Konnyu K; Morales CR
    Biochem Biophys Res Commun; 2008 Aug; 373(2):292-7. PubMed ID: 18559255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of Rab22a hampers the transport between endosomes and the Golgi apparatus.
    Mesa R; Magadán J; Barbieri A; López C; Stahl PD; Mayorga LS
    Exp Cell Res; 2005 Apr; 304(2):339-53. PubMed ID: 15748882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Lysosomal hydrolases have specific conformational domains for acquisition of mannose-6-phosphate].
    Himeno M; Tanaka Y
    Nihon Rinsho; 1995 Dec; 53(12):2892-7. PubMed ID: 8577031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel mutagenesis strategy identifies distantly spaced amino acid sequences that are required for the phosphorylation of both the oligosaccharides of procathepsin D by N-acetylglucosamine 1-phosphotransferase.
    Dustin ML; Baranski TJ; Sampath D; Kornfeld S
    J Biol Chem; 1995 Jan; 270(1):170-9. PubMed ID: 7814370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.