These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 26698470)

  • 1. Metal selection for wire array metamaterials for infrared frequencies.
    Hayashi JG; Fleming S; Kuhlmey BT; Argyros A
    Opt Express; 2015 Nov; 23(23):29867-81. PubMed ID: 26698470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.
    Jiang ZH; Yun S; Toor F; Werner DH; Mayer TS
    ACS Nano; 2011 Jun; 5(6):4641-7. PubMed ID: 21456579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realization of mid-infrared graphene hyperbolic metamaterials.
    Chang YC; Liu CH; Liu CH; Zhang S; Marder SR; Narimanov EE; Zhong Z; Norris TB
    Nat Commun; 2016 Feb; 7():10568. PubMed ID: 26843149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-ideal optical metamaterial absorbers with super-octave bandwidth.
    Bossard JA; Lin L; Yun S; Liu L; Werner DH; Mayer TS
    ACS Nano; 2014 Feb; 8(2):1517-24. PubMed ID: 24472069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of highly absorbing metamaterials for infrared frequencies.
    Dayal G; Ramakrishna SA
    Opt Express; 2012 Jul; 20(16):17503-8. PubMed ID: 23038303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards subdiffraction imaging with wire array metamaterial hyperlenses at MIR frequencies.
    Hayashi JG; Stefani A; Antipov S; Lwin R; Jackson SD; Hudson DD; Fleming S; Argyros A; Kuhlmey BT
    Opt Express; 2019 Jul; 27(15):21420-21434. PubMed ID: 31510220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional optical metamaterial with a negative refractive index.
    Valentine J; Zhang S; Zentgraf T; Ulin-Avila E; Genov DA; Bartal G; Zhang X
    Nature; 2008 Sep; 455(7211):376-9. PubMed ID: 18690249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-loss impedance-matched optical metamaterials with zero-phase delay.
    Yun S; Jiang ZH; Xu Q; Liu Z; Werner DH; Mayer TS
    ACS Nano; 2012 May; 6(5):4475-82. PubMed ID: 22530626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks.
    Zhang S; Fan W; Panoiu NC; Malloy KJ; Osgood RM; Brueck SR
    Opt Express; 2006 Jul; 14(15):6778-87. PubMed ID: 19516859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metamaterial filters at optical-infrared frequencies.
    Brückner JB; Le Rouzo J; Escoubas L; Berginc G; Calvo-Perez O; Vukadinovic N; Flory F
    Opt Express; 2013 Jul; 21(14):16992-7006. PubMed ID: 23938548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane.
    Dayal G; Ramakrishna SA
    Opt Express; 2014 Jun; 22(12):15104-10. PubMed ID: 24977603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates.
    Han NR; Chen ZC; Lim CS; Ng B; Hong MH
    Opt Express; 2011 Apr; 19(8):6990-8. PubMed ID: 21503013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial.
    Zhang J; MacDonald KF; Zheludev NI
    Opt Express; 2013 Nov; 21(22):26721-8. PubMed ID: 24216893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional photonic metamaterials at optical frequencies.
    Liu N; Guo H; Fu L; Kaiser S; Schweizer H; Giessen H
    Nat Mater; 2008 Jan; 7(1):31-7. PubMed ID: 18059275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials.
    Ross MB; Blaber MG; Schatz GC
    Nat Commun; 2014 Jun; 5():4090. PubMed ID: 24934374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths.
    Zhao Y; Yun F; Huang Y; Wang S; Feng L; Li Y; Guo M; Ding W; Zhang Y
    Sci Rep; 2017 Feb; 7():41966. PubMed ID: 28176795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental demonstration of near-infrared negative-index metamaterials.
    Zhang S; Fan W; Panoiu NC; Malloy KJ; Osgood RM; Brueck SR
    Phys Rev Lett; 2005 Sep; 95(13):137404. PubMed ID: 16197179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.
    Decker M; Staude I; Shishkin II; Samusev KB; Parkinson P; Sreenivasan VK; Minovich A; Miroshnichenko AE; Zvyagin A; Jagadish C; Neshev DN; Kivshar YS
    Nat Commun; 2013; 4():2949. PubMed ID: 24335832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption.
    Lobet M; Lard M; Sarrazin M; Deparis O; Henrard L
    Opt Express; 2014 May; 22(10):12678-90. PubMed ID: 24921385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances.
    Tuniz A; Kaltenecker KJ; Fischer BM; Walther M; Fleming SC; Argyros A; Kuhlmey BT
    Nat Commun; 2013; 4():2706. PubMed ID: 24162458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.