These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 26698489)

  • 1. Negative refraction at telecommunication wavelengths through plasmon-photon hybridization.
    Kalusniak S; Sadofev S; Henneberger F
    Opt Express; 2015 Nov; 23(23):30079-87. PubMed ID: 26698489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials.
    Riley CT; Smalley JS; Post KW; Basov DN; Fainman Y; Wang D; Liu Z; Sirbuly DJ
    Small; 2016 Feb; 12(7):892-901. PubMed ID: 26715115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of hyperbolic metamaterials at telecommunication wavelength using Ga-doped ZnO.
    Kalusniak S; Orphal L; Sadofev S
    Opt Express; 2015 Dec; 23(25):32555-60. PubMed ID: 26699045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry-Perot microcavity of Ag/ZnO microwires.
    Jiang MM; Zhao B; Chen HY; Zhao DX; Shan CX; Shen DZ
    Nanoscale; 2014; 6(3):1354-61. PubMed ID: 24292373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials.
    Liu X; Swihart MT
    Chem Soc Rev; 2014 Jun; 43(11):3908-20. PubMed ID: 24566528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-wavelength energy concentration with electrically generated mid-infrared surface plasmons.
    Bousseksou A; Babuty A; Tetienne JP; Moldovan-Doyen I; Braive R; Beaudoin G; Sagnes I; De Wilde Y; Colombelli R
    Opt Express; 2012 Jun; 20(13):13738-47. PubMed ID: 22714439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZnO as a tunable metal: new types of surface plasmon polaritons.
    Kalusniak S; Sadofev S; Henneberger F
    Phys Rev Lett; 2014 Apr; 112(13):137401. PubMed ID: 24745452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring alphabetical metamaterials in optical frequency: plasmonic coupling, dispersion, and sensing.
    Zhang J; Cao C; Xu X; Liow C; Li S; Tan P; Xiong Q
    ACS Nano; 2014 Apr; 8(4):3796-806. PubMed ID: 24670107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focusing of electromagnetic fields in high-Q hybrid wedge plasmon polariton microresonator.
    Lu Q; Shu F; Chen D; Wu G; Zhou P
    Appl Opt; 2012 Oct; 51(29):6968-73. PubMed ID: 23052074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon modes in graphene: status and prospect.
    Politano A; Chiarello G
    Nanoscale; 2014 Oct; 6(19):10927-40. PubMed ID: 25130215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong coupling and laser action of ladder-type oligo(p-phenylene)s in a microcavity.
    Höfner M; Kobin B; Hecht S; Henneberger F
    Chemphyschem; 2014 Dec; 15(17):3805-8. PubMed ID: 25234768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths.
    Lin KT; Chen HL; Lai YS; Yu CC
    Nat Commun; 2014; 5():3288. PubMed ID: 24518852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing.
    Biris CG; Panoiu NC
    Nanotechnology; 2011 Jun; 22(23):235502. PubMed ID: 21474872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic gap-mode nanocavities with metallic mirrors in high-index cladding.
    Cheng PJ; Weng CY; Chang SW; Lin TR; Tien CH
    Opt Express; 2013 Jun; 21(11):13479-91. PubMed ID: 23736601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of metal-dielectric grating lasers only supporting surface-wave-like modes.
    Chiang PJ; Chang SW
    Opt Express; 2014 Nov; 22(23):27845-58. PubMed ID: 25402027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear pulsed excitation of high-Q optical modes of plasmonic nanocavities.
    Biris CG; Panoiu NC
    Opt Express; 2010 Aug; 18(16):17165-79. PubMed ID: 20721105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersion control in plasmonic open nanocavities.
    Zhu X; Zhang J; Xu J; Li H; Wu X; Liao Z; Zhao Q; Yu D
    ACS Nano; 2011 Aug; 5(8):6546-52. PubMed ID: 21749112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal.
    Berrier A; Mulot M; Swillo M; Qiu M; Thylén L; Talneau A; Anand S
    Phys Rev Lett; 2004 Aug; 93(7):073902. PubMed ID: 15324238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.
    Muhammed MA; Döblinger M; Rodríguez-Fernández J
    J Am Chem Soc; 2015 Sep; 137(36):11666-77. PubMed ID: 26332445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.