These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26698561)

  • 1. A forest-based feature screening approach for large-scale genome data with complex structures.
    Wang G; Fu G; Corcoran C
    BMC Genet; 2015 Dec; 16():148. PubMed ID: 26698561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting Linkage Disequilibrium for Ultrahigh-Dimensional Genome-Wide Data with an Integrated Statistical Approach.
    Carlsen M; Fu G; Bushman S; Corcoran C
    Genetics; 2016 Feb; 202(2):411-26. PubMed ID: 26661113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening large-scale association study data: exploiting interactions using random forests.
    Lunetta KL; Hayward LB; Segal J; Van Eerdewegh P
    BMC Genet; 2004 Dec; 5():32. PubMed ID: 15588316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A system-level pathway-phenotype association analysis using synthetic feature random forest.
    Pan Q; Hu T; Malley JD; Andrew AS; Karagas MR; Moore JH
    Genet Epidemiol; 2014 Apr; 38(3):209-19. PubMed ID: 24535726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multigenic modeling of complex disease by random forests.
    Sun YV
    Adv Genet; 2010; 72():73-99. PubMed ID: 21029849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding the epistasis needles in the genome-wide haystack.
    Ritchie MD
    Methods Mol Biol; 2015; 1253():19-33. PubMed ID: 25403525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple testing in genome-wide association studies via hidden Markov models.
    Wei Z; Sun W; Wang K; Hakonarson H
    Bioinformatics; 2009 Nov; 25(21):2802-8. PubMed ID: 19654115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging local ancestry to detect gene-gene interactions in genome-wide data.
    Aschard H; Gusev A; Brown R; Pasaniuc B
    BMC Genet; 2015 Oct; 16():124. PubMed ID: 26498930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A random forest approach to capture genetic effects in the presence of population structure.
    Stephan J; Stegle O; Beyer A
    Nat Commun; 2015 Jun; 6():7432. PubMed ID: 26109276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies.
    Wang J; Joshi T; Valliyodan B; Shi H; Liang Y; Nguyen HT; Zhang J; Xu D
    BMC Genomics; 2015 Nov; 16():1011. PubMed ID: 26607428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A random forest approach to the detection of epistatic interactions in case-control studies.
    Jiang R; Tang W; Wu X; Fu W
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S65. PubMed ID: 19208169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNPInterForest: a new method for detecting epistatic interactions.
    Yoshida M; Koike A
    BMC Bioinformatics; 2011 Dec; 12():469. PubMed ID: 22151604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the ability of tree-based methods and logistic regression for the detection of SNP-SNP interaction.
    García-Magariños M; López-de-Ullibarri I; Cao R; Salas A
    Ann Hum Genet; 2009 May; 73(Pt 3):360-9. PubMed ID: 19291098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical power for identifying nucleotide markers associated with quantitative traits in genome-wide association analysis using a mixed model.
    Shin J; Lee C
    Genomics; 2015 Jan; 105(1):1-4. PubMed ID: 25451740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random forest fishing: a novel approach to identifying organic group of risk factors in genome-wide association studies.
    Yang W; Charles Gu C
    Eur J Hum Genet; 2014 Feb; 22(2):254-9. PubMed ID: 23695277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filter-free exhaustive odds ratio-based genome-wide interaction approach pinpoints evidence for interaction in the HLA region in psoriasis.
    Grange L; Bureau JF; Nikolayeva I; Paul R; Van Steen K; Schwikowski B; Sakuntabhai A
    BMC Genet; 2015 Feb; 16():11. PubMed ID: 25655172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNP selection and classification of genome-wide SNP data using stratified sampling random forests.
    Wu Q; Ye Y; Liu Y; Ng MK
    IEEE Trans Nanobioscience; 2012 Sep; 11(3):216-27. PubMed ID: 22987127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling case-control relationships in designing a simple and powerful method for detecting gene-gene interactions.
    Canela-Xandri O; Julià A; Gelpí JL; Marsal S
    Genet Epidemiol; 2012 Nov; 36(7):710-6. PubMed ID: 22886951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting PCOS susceptibility loci from genome-wide association studies via iterative trend correlation based feature screening.
    Dai X; Fu G; Reese R
    BMC Bioinformatics; 2020 May; 21(1):177. PubMed ID: 32366216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.