These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26698561)

  • 21. New technologies provide insights into genetic basis of psychiatric disorders and explain their co-morbidity.
    Rudan I
    Psychiatr Danub; 2010 Jun; 22(2):190-2. PubMed ID: 20562745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A FAST ALGORITHM FOR DETECTING GENE-GENE INTERACTIONS IN GENOME-WIDE ASSOCIATION STUDIES.
    Li J; Zhong W; Li R; Wu R
    Ann Appl Stat; 2014; 8(4):2292-2318. PubMed ID: 26457126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predictor correlation impacts machine learning algorithms: implications for genomic studies.
    Nicodemus KK; Malley JD
    Bioinformatics; 2009 Aug; 25(15):1884-90. PubMed ID: 19460890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapping the genetic architecture of complex traits in experimental populations.
    Yang J; Zhu J; Williams RW
    Bioinformatics; 2007 Jun; 23(12):1527-36. PubMed ID: 17459962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A permutation approach for selecting the penalty parameter in penalized model selection.
    Sabourin JA; Valdar W; Nobel AB
    Biometrics; 2015 Dec; 71(4):1185-94. PubMed ID: 26243050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of methods for interpreting random forest models of genetic association in the presence of non-additive interactions.
    Orlenko A; Moore JH
    BioData Min; 2021 Jan; 14(1):9. PubMed ID: 33514397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detecting gene-gene interactions using a permutation-based random forest method.
    Li J; Malley JD; Andrew AS; Karagas MR; Moore JH
    BioData Min; 2016; 9():14. PubMed ID: 27053949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SNP interaction detection with Random Forests in high-dimensional genetic data.
    Winham SJ; Colby CL; Freimuth RR; Wang X; de Andrade M; Huebner M; Biernacka JM
    BMC Bioinformatics; 2012 Jul; 13():164. PubMed ID: 22793366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A powerful test of independent assortment that determines genome-wide significance quickly and accurately.
    Stewart WC; Hager VR
    Heredity (Edinb); 2016 Aug; 117(2):109-13. PubMed ID: 27245422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bench Research Informed by GWAS Results.
    Kondratyev NV; Alfimova MV; Golov AK; Golimbet VE
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. r2VIM: A new variable selection method for random forests in genome-wide association studies.
    Szymczak S; Holzinger E; Dasgupta A; Malley JD; Molloy AM; Mills JL; Brody LC; Stambolian D; Bailey-Wilson JE
    BioData Min; 2016; 9():7. PubMed ID: 26839594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of complex data structures for planning of studies with focus on biomarker comparison.
    Schulz A; Zöller D; Nickels S; Beutel ME; Blettner M; Wild PS; Binder H
    BMC Med Res Methodol; 2017 Jun; 17(1):90. PubMed ID: 28610631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A U-Statistic-based random Forest approach for genetic association study.
    Li M; Peng RS; Wei C; Lu Q
    Front Biosci (Elite Ed); 2012 Jun; 4(7):2607-2617. PubMed ID: 22652671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-stage analysis for selecting fixed numbers of features in omics association studies.
    Kawabata T; Emoto R; Nishino J; Takahashi K; Matsui S
    Stat Med; 2019 Jul; 38(16):2956-2971. PubMed ID: 30931544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic dissection of complex traits: an overview.
    Rao DC
    Adv Genet; 2001; 42():13-34. PubMed ID: 11037311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. VariantSpark: Cloud-based machine learning for association study of complex phenotype and large-scale genomic data.
    Bayat A; Szul P; O'Brien AR; Dunne R; Hosking B; Jain Y; Hosking C; Luo OJ; Twine N; Bauer DC
    Gigascience; 2020 Aug; 9(8):. PubMed ID: 32761098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Collective feature selection to identify crucial epistatic variants.
    Verma SS; Lucas A; Zhang X; Veturi Y; Dudek S; Li B; Li R; Urbanowicz R; Moore JH; Kim D; Ritchie MD
    BioData Min; 2018; 11():5. PubMed ID: 29713383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome Wide Epistasis Study of On-Statin Cardiovascular Events with Iterative Feature Reduction and Selection.
    Adams SM; Feroze H; Nguyen T; Eum S; Cornelio C; Harralson AF
    J Pers Med; 2020 Nov; 10(4):. PubMed ID: 33171725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A selective overview of feature screening methods with applications to neuroimaging data.
    He K; Xu H; Kang J
    Wiley Interdiscip Rev Comput Stat; 2019; 11(2):. PubMed ID: 32435328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Sparse MLE for Ultra-High-Dimensional Feature Screening.
    Xu C; Chen J
    J Am Stat Assoc; 2014; 109(507):1257-1269. PubMed ID: 25382886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.