These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26698700)

  • 1. High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array.
    Gu W; Tang G; Tao W
    Opt Express; 2015 Nov; 23(24):30681-94. PubMed ID: 26698700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating.
    Nguyen-Huu N; Chen YB; Lo YL
    Opt Express; 2012 Mar; 20(6):5882-90. PubMed ID: 22418465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems.
    Yeng YX; Chan WR; Rinnerbauer V; Joannopoulos JD; Soljačić M; Celanovic I
    Opt Express; 2013 Nov; 21 Suppl 6():A1035-51. PubMed ID: 24514924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter.
    Song J; Si M; Cheng Q; Luo Z
    Appl Opt; 2016 Feb; 55(6):1284-90. PubMed ID: 26906580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Selectivity Planar Thermal Emitter with a Stable Temperature over 1400 K for a Thermophotovoltaic System.
    Wang J; Wu Z; Liu Y; Hou S; Qiao Y; Tang Z; Mao J; Zhang Q; Cao F
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49123-49131. PubMed ID: 37842846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiconductor-based selective emitter with a sharp cutoff for thermophotovoltaic energy conversion.
    Ni Q; Ramesh R; Chen CA; Wang L
    Opt Lett; 2021 Jul; 46(13):3163-3166. PubMed ID: 34197406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems.
    Ghanekar A; Lin L; Zheng Y
    Opt Express; 2016 May; 24(10):A868-77. PubMed ID: 27409959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mie-Metamaterials-Based Thermal Emitter for Near-Field Thermophotovoltaic Systems.
    Ghanekar A; Tian Y; Zhang S; Cui Y; Zheng Y
    Materials (Basel); 2017 Jul; 10(8):. PubMed ID: 28773241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal degradation of refractory layered metamaterial for thermophotovoltaic emitter under high vacuum condition.
    Kim JH; Jung SM; Shin MW
    Opt Express; 2019 Feb; 27(3):3039-3054. PubMed ID: 30732331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems.
    Abbas MA; Kim J; Rana AS; Kim I; Rehman B; Ahmad Z; Massoud Y; Seong J; Badloe T; Park K; Mehmood MQ; Zubair M; Rho J
    Nanoscale; 2022 May; 14(17):6425-6436. PubMed ID: 35416207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple Rectangular Gratings as a Near-Field "Anti-Reflection" Pattern for GaSb TPV Cells.
    Yu H; Liu D; Yang Z; Duan Y
    Sci Rep; 2017 Apr; 7(1):1026. PubMed ID: 28432306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap.
    Jin S; Lim M; Lee SS; Lee BJ
    Opt Express; 2016 Mar; 24(6):A635-49. PubMed ID: 27136882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes.
    Nguyen-Huu N; Pištora J; Cada M
    Nanotechnology; 2016 Apr; 27(15):155402. PubMed ID: 26938942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermophotovoltaic efficiency of 40.
    LaPotin A; Schulte KL; Steiner MA; Buznitsky K; Kelsall CC; Friedman DJ; Tervo EJ; France RM; Young MR; Rohskopf A; Verma S; Wang EN; Henry A
    Nature; 2022 Apr; 604(7905):287-291. PubMed ID: 35418635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic crystal enhanced silicon cell based thermophotovoltaic systems.
    Yeng YX; Chan WR; Rinnerbauer V; Stelmakh V; Senkevich JJ; Joannopoulos JD; Soljacic M; Čelanović I
    Opt Express; 2015 Feb; 23(3):A157-68. PubMed ID: 25836245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal Design of Wavelength Selective Thermal Emitter for Thermophotovoltaic Applications.
    Ghanekar A; Sun M; Zhang Z; Zheng Y
    J Therm Sci Eng Appl; 2018 Feb; 10(1):0110041-110044. PubMed ID: 29051797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and performance analysis of a solar thermophotovoltaic system targeting on the efficient utilization of AM0 space solar radiation.
    Chen B; Shan S
    iScience; 2022 Nov; 25(11):105373. PubMed ID: 36345332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate.
    Inoue T; Watanabe K; Asano T; Noda S
    Opt Express; 2018 Jan; 26(2):A192-A208. PubMed ID: 29401929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Module-Level Polaritonic Thermophotovoltaic Emitters via Hierarchical Sequential Learning.
    Wang Q; Huang Z; Li J; Huang GY; Wang D; Zhang H; Guo J; Ding M; Chen J; Zhang Z; Rui Z; Shang W; Xu JY; Zhang J; Shiomi J; Fu T; Deng T; Johnson SG; Xu H; Cui K
    Nano Lett; 2023 Feb; 23(4):1144-1151. PubMed ID: 36749930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering.
    Omair Z; Scranton G; Pazos-Outón LM; Xiao TP; Steiner MA; Ganapati V; Peterson PF; Holzrichter J; Atwater H; Yablonovitch E
    Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15356-15361. PubMed ID: 31311864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.