BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26698774)

  • 1. Light driven optofluidic switch developed in a ZnO-overlaid microstructured optical fiber.
    Konidakis I; Konstantaki M; Tsibidis GD; Pissadakis S
    Opt Express; 2015 Nov; 23(24):31496-509. PubMed ID: 26698774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers.
    Majchrowicz D; Hirsch M; Wierzba P; Bechelany M; Viter R; Jędrzejewska-Szczerska M
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 27011188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-in-fiber optofluidic sensor fabricated by femtosecond laser assisted chemical etching.
    Yuan L; Huang J; Lan X; Wang H; Jiang L; Xiao H
    Opt Lett; 2014 Apr; 39(8):2358-61. PubMed ID: 24978992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidic magnetometer developed in a microstructured optical fiber.
    Candiani A; Konstantaki M; Margulis W; Pissadakis S
    Opt Lett; 2012 Nov; 37(21):4467-9. PubMed ID: 23114331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Measurement of Refractive Index Using 3D-Printed Optofluidic Fiber Sensor.
    Leça JM; Magalhães Y; Antunes P; Pereira V; Ferreira MS
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructured optical fiber based Fabry-Pérot interferometer as a humidity sensor utilizing chitosan polymeric matrix for breath monitoring.
    Shrivastav AM; Gunawardena DS; Liu Z; Tam HY
    Sci Rep; 2020 Apr; 10(1):6002. PubMed ID: 32265462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High temperature microstructured fiber sensor based on a partial-reflection-enabled intrinsic Fabry-Perot interferometer.
    Tan X; Geng Y; Li X; Gao R; Yin Z
    Appl Opt; 2013 Dec; 52(34):8195-8. PubMed ID: 24513817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical-assisted femtosecond laser writing of lab-in-fibers.
    Haque M; Lee KK; Ho S; Fernandes LA; Herman PR
    Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards biochips using microstructured optical fiber sensors.
    Rindorf L; Høiby PE; Jensen JB; Pedersen LH; Bang O; Geschke O
    Anal Bioanal Chem; 2006 Aug; 385(8):1370-5. PubMed ID: 16761126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-efficient subwavelength-scale optofluidic waveguides with tapered microstructured optical fibers.
    Yu R; Wang C; Jiang W; Shen Z; Yan Z; Hao Y; Shi Y; Yu F; Hua P; Schötz G; Liu AQ; Xiao L
    Opt Express; 2021 Nov; 29(23):38068-38081. PubMed ID: 34808866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrowetting-driven solar indoor lighting (e-SIL): an optofluidic approach towards sustainable buildings.
    Thio SK; Jiang D; Park SY
    Lab Chip; 2018 Jun; 18(12):1725-1735. PubMed ID: 29726880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lab-on-fiber electrophoretic trace mixture separating and detecting an optofluidic device based on a microstructured optical fiber.
    Yang X; Guo X; Li S; Kong D; Liu Z; Yang J; Yuan L
    Opt Lett; 2016 Apr; 41(8):1873-6. PubMed ID: 27082367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating.
    Konstantaki M; Klini A; Anglos D; Pissadakis S
    Opt Express; 2012 Apr; 20(8):8472-84. PubMed ID: 22513555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical trapping and binding of particles in an optofluidic stable Fabry-Pérot resonator with single-sided injection.
    Gaber N; Malak M; Marty F; Angelescu DE; Richalot E; Bourouina T
    Lab Chip; 2014 Jul; 14(13):2259-65. PubMed ID: 24816268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Optical Vortex from a Nanogroove-Structured Optofluidic Microlaser.
    Qiao Z; Gong C; Liao Y; Wang C; Chan KK; Zhu S; Kim M; Chen YC
    Nano Lett; 2022 Feb; 22(3):1425-1432. PubMed ID: 34817181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical and Exciton Dynamical Properties of a Screw-Dislocation-Driven ZnO:Sn Microstructure.
    Dai J; Lu J; Wang F; Guo J; Gu N; Xu C
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12655-62. PubMed ID: 26011860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optofluidic devices and applications in photonics, sensing and imaging.
    Pang L; Chen HM; Freeman LM; Fainman Y
    Lab Chip; 2012 Oct; 12(19):3543-51. PubMed ID: 22810383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optofluidics in Microstructured Optical Fibers.
    Shao L; Liu Z; Hu J; Gunawardena D; Tam HY
    Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing.
    Liu Y; Qu S
    Appl Opt; 2014 Jan; 53(3):469-74. PubMed ID: 24514135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber.
    Wu C; Fu HY; Qureshi KK; Guan BO; Tam HY
    Opt Lett; 2011 Feb; 36(3):412-4. PubMed ID: 21283207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.