These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26698775)

  • 21. Instrument for in situ synchronous measurement of the multi-angle volume scattering function and attenuation coefficient.
    Liu C; Li C; Zhao W; Chen F; Yang Z; Zhang X; Zhang Y; Zhou W; Cao W; Yu L; Xing H
    Opt Express; 2023 Jan; 31(1):248-264. PubMed ID: 36606964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monte Carlo simulations of the backscattering measurements for associated uncertainty.
    Vadakke-Chanat S; Shanmugam P; Sundarabalan B
    Opt Express; 2018 Aug; 26(16):21258-21270. PubMed ID: 30119430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deviations from plane-wave Mie scattering and precise retrieval of refractive index for a single spherical particle in an optical cavity.
    Mason BJ; Walker JS; Reid JP; Orr-Ewing AJ
    J Phys Chem A; 2014 Mar; 118(11):2083-8. PubMed ID: 24580563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of silica microspheres having refractive index similar to bacteria for conversion of flow cytometric forward light scatter into biovolume.
    Foladori P; Quaranta A; Ziglio G
    Water Res; 2008 Aug; 42(14):3757-66. PubMed ID: 18662824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of a flow cytometry method to determine size and real refractive index distributions in natural marine particle populations.
    Agagliate J; Röttgers R; Twardowski MS; McKee D
    Appl Opt; 2018 Mar; 57(7):1705-1716. PubMed ID: 29522024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The relative effects of particles and turbulence on acoustic scattering from deep-sea hydrothermal vent plumes.
    Xu G; Di Iorio D
    J Acoust Soc Am; 2011 Oct; 130(4):1856-67. PubMed ID: 21973340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of Scattering and Absorption Cross Sections of Microspheres for Wavelengths between 240 nm and 800 nm.
    Gaigalas AK; Wang L; Choquette S
    J Res Natl Inst Stand Technol; 2013; 118():1-14. PubMed ID: 26401421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations.
    Graaff R; Aarnoudse JG; Zijp JR; Sloot PM; de Mul FF; Greve J; Koelink MH
    Appl Opt; 1992 Apr; 31(10):1370-6. PubMed ID: 20720767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Semi-analytical modeling and parameterization of particulates-in-water phase function for forward angles.
    Sahu SK; Shanmugam P
    Opt Express; 2015 Aug; 23(17):22291-307. PubMed ID: 26368201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of Scattering Cross Section with a Spectrophotometer with an Integrating Sphere Detector.
    Gaigalas AK; Wang L; Karpiak V; Zhang YZ; Choquette S
    J Res Natl Inst Stand Technol; 2012; 117():202-15. PubMed ID: 26900524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polarized light scattered from monodisperse randomly oriented nonspherical aerosol particles: measurements.
    Pinnick RG; Carroll DE; Hofmann DJ
    Appl Opt; 1976 Feb; 15(2):384-93. PubMed ID: 20164979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters.
    McKee D; Chami M; Brown I; Calzado VS; Doxaran D; Cunningham A
    Appl Opt; 2009 Aug; 48(24):4663-75. PubMed ID: 19696853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow cytometer for measurement of the light scattering of viral and other submicroscopic particles.
    Steen HB
    Cytometry A; 2004 Feb; 57(2):94-9. PubMed ID: 14750130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental validation of a time domain simulation of high frequency ultrasonic propagation in a suspension of rigid particles.
    Galaz B; Haïat G; Berti R; Taulier N; Amman JJ; Urbach W
    J Acoust Soc Am; 2010 Jan; 127(1):148-54. PubMed ID: 20058958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectral variability of the particulate backscattering ratio.
    Whitmire AL; Boss E; Cowles TJ; Pegau WS
    Opt Express; 2007 May; 15(11):7019-31. PubMed ID: 19547019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anomalous forward scattering of dielectric gain nanoparticles.
    Xie YM; Tan W; Wang ZG
    Opt Express; 2015 Feb; 23(3):2091-100. PubMed ID: 25836081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved correction methods for field measurements of particulate light backscattering in turbid waters.
    Doxaran D; Leymarie E; Nechad B; Dogliotti A; Ruddick K; Gernez P; Knaeps E
    Opt Express; 2016 Feb; 24(4):3615-37. PubMed ID: 26907020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship of light scattering at an angle in the backward direction to the backscattering coefficient.
    Boss E; Pegau WS
    Appl Opt; 2001 Oct; 40(30):5503-7. PubMed ID: 18364835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiative scattering cross sections: comparison of experiment and theory.
    Nelson HF
    Appl Opt; 1981 Feb; 20(3):500-4. PubMed ID: 20309141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.