These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26698788)

  • 1. Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications.
    Foley JJ; Ungaro C; Sun K; Gupta MC; Gray SK
    Opt Express; 2015 Nov; 23(24):A1373-87. PubMed ID: 26698788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Selectivity Planar Thermal Emitter with a Stable Temperature over 1400 K for a Thermophotovoltaic System.
    Wang J; Wu Z; Liu Y; Hou S; Qiao Y; Tang Z; Mao J; Zhang Q; Cao F
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49123-49131. PubMed ID: 37842846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Temperature Selective Emitter Design and Materials: Titanium Aluminum Nitride Alloys for Thermophotovoltaics.
    Jeon N; Mandia DJ; Gray SK; Foley JJ; Martinson ABF
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41347-41355. PubMed ID: 31652047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semitransparent thermophotovoltaics for efficient utilization of moderate temperature thermal radiation.
    Lenert A; Burger T; Roy-Layinde B; Lentz R; Berquist ZJ; Forrest SR
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2215977119. PubMed ID: 36409918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 'Squeezing' near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion.
    Karalis A; Joannopoulos JD
    Sci Rep; 2016 Jul; 6():28472. PubMed ID: 27363522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiconductor-based selective emitter with a sharp cutoff for thermophotovoltaic energy conversion.
    Ni Q; Ramesh R; Chen CA; Wang L
    Opt Lett; 2021 Jul; 46(13):3163-3166. PubMed ID: 34197406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Narrowband Silicon-Based Thermal Emitter with Excellent High-Temperature Stability Fabricated by Lithography-Free Methods.
    Hou G; Wang Q; Zhu Y; Lu Z; Xu J; Chen K
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thin-film 'Thermal Well' Emitters and Absorbers for High-Efficiency Thermophotovoltaics.
    Tong JK; Hsu WC; Huang Y; Boriskina SV; Chen G
    Sci Rep; 2015 Jun; 5():10661. PubMed ID: 26030711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-perfect photon utilization in an air-bridge thermophotovoltaic cell.
    Fan D; Burger T; McSherry S; Lee B; Lenert A; Forrest SR
    Nature; 2020 Oct; 586(7828):237-241. PubMed ID: 32958951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters.
    Sakr E; Bermel P
    Opt Express; 2017 Oct; 25(20):A880-A895. PubMed ID: 29041299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput realization of an infrared selective absorber/emitter by DUV microsphere projection lithography.
    Bonakdar A; Rezaei M; Dexheimer E; Mohseni H
    Nanotechnology; 2016 Jan; 27(3):035301. PubMed ID: 26650855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metamaterial emitter for thermophotovoltaics stable up to 1400 °C.
    Chirumamilla M; Krishnamurthy GV; Knopp K; Krekeler T; Graf M; Jalas D; Ritter M; Störmer M; Petrov AY; Eich M
    Sci Rep; 2019 May; 9(1):7241. PubMed ID: 31076610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems.
    Yeng YX; Chan WR; Rinnerbauer V; Joannopoulos JD; Soljačić M; Celanovic I
    Opt Express; 2013 Nov; 21 Suppl 6():A1035-51. PubMed ID: 24514924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal Design of Wavelength Selective Thermal Emitter for Thermophotovoltaic Applications.
    Ghanekar A; Sun M; Zhang Z; Zheng Y
    J Therm Sci Eng Appl; 2018 Feb; 10(1):0110041-110044. PubMed ID: 29051797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superenhancers: novel opportunities for nanowire optoelectronics.
    Khudiyev T; Bayindir M
    Sci Rep; 2014 Dec; 4():7505. PubMed ID: 25511865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermophotovoltaic efficiency of 40.
    LaPotin A; Schulte KL; Steiner MA; Buznitsky K; Kelsall CC; Friedman DJ; Tervo EJ; France RM; Young MR; Rohskopf A; Verma S; Wang EN; Henry A
    Nature; 2022 Apr; 604(7905):287-291. PubMed ID: 35418635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of thermophotovoltaics for tolerance of parasitic absorption.
    Raman VK; Burger T; Lenert A
    Opt Express; 2019 Oct; 27(22):31757-31772. PubMed ID: 31684401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Module-Level Polaritonic Thermophotovoltaic Emitters via Hierarchical Sequential Learning.
    Wang Q; Huang Z; Li J; Huang GY; Wang D; Zhang H; Guo J; Ding M; Chen J; Zhang Z; Rui Z; Shang W; Xu JY; Zhang J; Shiomi J; Fu T; Deng T; Johnson SG; Xu H; Cui K
    Nano Lett; 2023 Feb; 23(4):1144-1151. PubMed ID: 36749930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanogap near-field thermophotovoltaics.
    Fiorino A; Zhu L; Thompson D; Mittapally R; Reddy P; Meyhofer E
    Nat Nanotechnol; 2018 Sep; 13(9):806-811. PubMed ID: 29915273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring high-temperature radiation and the resurrection of the incandescent source.
    Ilic O; Bermel P; Chen G; Joannopoulos JD; Celanovic I; Soljačić M
    Nat Nanotechnol; 2016 Apr; 11(4):320-4. PubMed ID: 26751172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.