These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 26698788)
21. Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems. Ghanekar A; Lin L; Zheng Y Opt Express; 2016 May; 24(10):A868-77. PubMed ID: 27409959 [TBL] [Abstract][Full Text] [Related]
22. Design and global optimization of high-efficiency solar thermal systems with tungsten cermets. Chester D; Bermel P; Joannopoulos JD; Soljacic M; Celanovic I Opt Express; 2011 May; 19 Suppl 3():A245-57. PubMed ID: 21643366 [TBL] [Abstract][Full Text] [Related]
23. High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array. Gu W; Tang G; Tao W Opt Express; 2015 Nov; 23(24):30681-94. PubMed ID: 26698700 [TBL] [Abstract][Full Text] [Related]
24. Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications. Chou JB; Yeng YX; Lenert A; Rinnerbauer V; Celanovic I; Soljačić M; Wang EN; Kim SG Opt Express; 2014 Jan; 22 Suppl 1():A144-54. PubMed ID: 24921991 [TBL] [Abstract][Full Text] [Related]
25. High-Temperature Carbonized Ceria Thermophotovoltaic Emitter beyond Tungsten. Oh S; Cho JW; Jeong D; Lee K; Lee EJ; Shin S; Kim SK; Nam Y ACS Appl Mater Interfaces; 2021 Sep; 13(36):42724-42731. PubMed ID: 34459586 [TBL] [Abstract][Full Text] [Related]
26. High-throughput screening of a high-Q mid-infrared Tamm emitter by material informatics. Xi W; Liu Y; Song J; Hu R; Luo X Opt Lett; 2021 Feb; 46(4):888-891. PubMed ID: 33577540 [TBL] [Abstract][Full Text] [Related]
27. Near-field thermophotovoltaics for efficient heat to electricity conversion at high power density. Mittapally R; Lee B; Zhu L; Reihani A; Lim JW; Fan D; Forrest SR; Reddy P; Meyhofer E Nat Commun; 2021 Jul; 12(1):4364. PubMed ID: 34272361 [TBL] [Abstract][Full Text] [Related]
28. Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals. Nagpal P; Han SE; Stein A; Norris DJ Nano Lett; 2008 Oct; 8(10):3238-43. PubMed ID: 18781817 [TBL] [Abstract][Full Text] [Related]
29. Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate. Inoue T; Watanabe K; Asano T; Noda S Opt Express; 2018 Jan; 26(2):A192-A208. PubMed ID: 29401929 [TBL] [Abstract][Full Text] [Related]
30. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks. Sergeant NP; Pincon O; Agrawal M; Peumans P Opt Express; 2009 Dec; 17(25):22800-12. PubMed ID: 20052206 [TBL] [Abstract][Full Text] [Related]
31. Multi-dimensional optimization of In Gamel MMA; Ker PJ; Lee HJ; Rashid WESWA; Hannan MA; David JPR; Jamaludin MZ Sci Rep; 2021 Apr; 11(1):7741. PubMed ID: 33833263 [TBL] [Abstract][Full Text] [Related]
32. One-Chip Near-Field Thermophotovoltaic Device Integrating a Thin-Film Thermal Emitter and Photovoltaic Cell. Inoue T; Koyama T; Kang DD; Ikeda K; Asano T; Noda S Nano Lett; 2019 Jun; 19(6):3948-3952. PubMed ID: 31137936 [TBL] [Abstract][Full Text] [Related]
33. Perfect optical absorption with nanostructured metal films: design and experimental demonstration. Perrakis G; Tsilipakos O; Kenanakis G; Kafesaki M; Soukoulis CM; Economou EN Opt Express; 2019 Mar; 27(5):6842-6850. PubMed ID: 30876261 [TBL] [Abstract][Full Text] [Related]
34. Nanostructures for Achieving Selective Properties of a Thermophotovoltaic Emitter. Šimonová L; Matějka M; Knápek A; Králík T; Pokorná Z; Mika F; Fořt T; Man O; Škarvada P; Otáhal A; Čudek P Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578758 [TBL] [Abstract][Full Text] [Related]
35. Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Omair Z; Scranton G; Pazos-Outón LM; Xiao TP; Steiner MA; Ganapati V; Peterson PF; Holzrichter J; Atwater H; Yablonovitch E Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15356-15361. PubMed ID: 31311864 [TBL] [Abstract][Full Text] [Related]
36. Design and global optimization of high-efficiency thermophotovoltaic systems. Bermel P; Ghebrebrhan M; Chan W; Yeng YX; Araghchini M; Hamam R; Marton CH; Jensen KF; Soljačić M; Joannopoulos JD; Johnson SG; Celanovic I Opt Express; 2010 Sep; 18 Suppl 3():A314-34. PubMed ID: 21165063 [TBL] [Abstract][Full Text] [Related]
37. Design and Fabrication of a Wavelength-Selective Near-Infrared Metasurface Emitter for a Thermophotovoltaic System. Sakurai A; Matsuno Y Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30823589 [TBL] [Abstract][Full Text] [Related]
38. Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications. Lim M; Jin S; Lee SS; Lee BJ Opt Express; 2015 Apr; 23(7):A240-53. PubMed ID: 25968790 [TBL] [Abstract][Full Text] [Related]
39. Silicon-based spectrally selective emitters with good high-temperature stability on stepped metasurfaces. Zhu Y; Hou G; Wang Q; Zhu T; Sun T; Xu J; Chen K Nanoscale; 2022 Aug; 14(30):10816-10822. PubMed ID: 35822626 [TBL] [Abstract][Full Text] [Related]
40. Multiband perfect absorbers using metal-dielectric films with optically dense medium for angle and polarization insensitive operation. You JB; Lee WJ; Won D; Yu K Opt Express; 2014 Apr; 22(7):8339-48. PubMed ID: 24718208 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]