These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 26698808)

  • 1. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.
    Mei L; Brydegaard M
    Opt Express; 2015 Nov; 23(24):A1613-28. PubMed ID: 26698808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique.
    Mei L; Guan P; Yang Y; Kong Z
    Opt Express; 2017 Aug; 25(16):A628-A638. PubMed ID: 29041035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection.
    Sun G; Qin L; Hou Z; Jing X; He F; Tan F; Zhang S
    Opt Express; 2018 Mar; 26(6):7423-7436. PubMed ID: 29609297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies.
    Mei L; Kong Z; Guan P
    Opt Express; 2018 Mar; 26(6):A260-A274. PubMed ID: 29609357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote sensing of atmospheric NO
    Mei L; Guan P; Kong Z
    Opt Express; 2017 Oct; 25(20):A953-A962. PubMed ID: 29041305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols.
    Kong Z; Ma T; Chen K; Gong Z; Mei L
    Appl Opt; 2019 Nov; 58(31):8612-8621. PubMed ID: 31873345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric Pollution Monitoring in Urban Area by Employing a 450-nm Lidar System.
    Kong Z; Liu Z; Zhang L; Guan P; Li L; Mei L
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison studies of the Scheimpflug lidar technique and the pulsed lidar technique for atmospheric aerosol sensing.
    Mei L; Ma T; Kong Z; Gong Z; Li H
    Appl Opt; 2019 Nov; 58(32):8981-8992. PubMed ID: 31873680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric CO
    Larsson J; Bood J; Xu CT; Yang X; Lindberg R; Laurell F; Brydegaard M
    Opt Express; 2019 Jun; 27(12):17348-17358. PubMed ID: 31252945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mini-Scheimpflug lidar system for all-day atmospheric remote sensing in the boundary layer.
    Mei L; Li Y; Kong Z; Ma T; Zhang Z; Fei R; Cheng Y; Gong Z; Liu K
    Appl Opt; 2020 Aug; 59(22):6729-6736. PubMed ID: 32749378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle profiling and classification by a dual-band continuous-wave lidar system.
    Zhao G; Malmqvist E; Török S; Bengtsson PE; Svanberg S; Bood J; Brydegaard M
    Appl Opt; 2018 Dec; 57(35):10164-10171. PubMed ID: 30645222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme.
    Mei L; Guan P
    Opt Lett; 2017 Sep; 42(18):3562-3565. PubMed ID: 28914902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of the planetary boundary layer height by employing the Scheimpflug lidar technique and the covariance wavelet transform method.
    Mei L; Li L; Liu Z; Fei R; Lu Q; Chen K; Gong Z
    Appl Opt; 2019 Oct; 58(29):8013-8020. PubMed ID: 31674355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact and efficient 1064 nm up-conversion atmospheric lidar.
    Chen Q; Mao S; Yin Z; Yi Y; Li X; Wang A; Wang X
    Opt Express; 2023 Jul; 31(15):23931-23943. PubMed ID: 37475233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband continuous-wave differential absorption lidar for atmospheric remote sensing of water vapor.
    Yu J; Cheng Y; Kong Z; Song J; Chang Y; Liu K; Gong Z; Mei L
    Opt Express; 2024 Jan; 32(3):3046-3061. PubMed ID: 38297536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement.
    Wu S; Song X; Liu B; Dai G; Liu J; Zhang K; Qin S; Hua D; Gao F; Liu L
    Opt Express; 2015 Dec; 23(26):33870-92. PubMed ID: 26832047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lidar remote sensing of laser-induced incandescence on light absorbing particles in the atmosphere.
    Miffre A; Anselmo C; Geffroy S; Fréjafon E; Rairoux P
    Opt Express; 2015 Feb; 23(3):2347-60. PubMed ID: 25836102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993.
    Sasano Y
    Appl Opt; 1996 Aug; 35(24):4941-52. PubMed ID: 21102920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-wavelength Mie-scattering Scheimpflug lidar system developed for the studies of the aerosol extinction coefficient and the Ångström exponent.
    Mei L; Kong Z; Ma T
    Opt Express; 2018 Nov; 26(24):31942-31956. PubMed ID: 30650773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Lidar observations of atmospheric aerosol optical properties over Yinchuan area].
    Mao JD; Hua DX; He TY; Wang M
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):2006-10. PubMed ID: 20828020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.