These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26698891)

  • 21. Anion-Mediated Photophysical Behavior in a C
    Barendt TA; Rašović I; Lebedeva MA; Farrow GA; Auty A; Chekulaev D; Sazanovich IV; Weinstein JA; Porfyrakis K; Beer PD
    J Am Chem Soc; 2018 Feb; 140(5):1924-1936. PubMed ID: 29337535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interlocked host anion recognition by an indolocarbazole-containing [2]rotaxane.
    Brown A; Mullen KM; Ryu J; Chmielewski MJ; Santos SM; Felix V; Thompson AL; Warren JE; Pascu SI; Beer PD
    J Am Chem Soc; 2009 Apr; 131(13):4937-52. PubMed ID: 19296631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bistable or oscillating state depending on station and temperature in three-station glycorotaxane molecular machines.
    Busseron E; Romuald C; Coutrot F
    Chemistry; 2010 Sep; 16(33):10062-73. PubMed ID: 20607770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence isomerism in [3]rotaxanes.
    Fuller AM; Leigh DA; Lusby PJ
    J Am Chem Soc; 2010 Apr; 132(13):4954-9. PubMed ID: 20230033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorus-based functional groups as hydrogen bonding templates for rotaxane formation.
    Ahmed R; Altieri A; D'Souza DM; Leigh DA; Mullen KM; Papmeyer M; Slawin AM; Wong JK; Woollins JD
    J Am Chem Soc; 2011 Aug; 133(31):12304-10. PubMed ID: 21718069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accelerating the Shuttling in Hydrogen-Bonded Rotaxanes: Active Role of the Axle and the End Station.
    Kumpulainen T; Panman MR; Bakker BH; Hilbers M; Woutersen S; Brouwer AM
    J Am Chem Soc; 2019 Dec; 141(48):19118-19129. PubMed ID: 31697078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and Structure of 3,3-Dimethylindoline Squaraine Rotaxanes.
    Jarvis TS; Collins CG; Dempsey JM; Oliver AG; Smith BD
    J Org Chem; 2017 Jun; 82(11):5819-5825. PubMed ID: 28516767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis, structure, and dynamic properties of hybrid organic-inorganic rotaxanes.
    Ballesteros B; Faust TB; Lee CF; Leigh DA; Muryn CA; Pritchard RG; Schultz D; Teat SJ; Timco GA; Winpenny RE
    J Am Chem Soc; 2010 Nov; 132(43):15435-44. PubMed ID: 20929228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functionally rigid bistable [2]rotaxanes.
    Nygaard S; Leung KC; Aprahamian I; Ikeda T; Saha S; Laursen BW; Kim SY; Hansen SW; Stein PC; Flood AH; Stoddart JF; Jeppesen JO
    J Am Chem Soc; 2007 Jan; 129(4):960-70. PubMed ID: 17243833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast pirouetting motion in a pyridine bisamine-containing copper-complexed rotaxane.
    Coronado E; Gaviña P; Ponce J; Tatay S
    Chemistry; 2014 Jun; 20(23):6939-50. PubMed ID: 24757014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective Nitrate Recognition by a Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle.
    Barendt TA; Docker A; Marques I; Félix V; Beer PD
    Angew Chem Int Ed Engl; 2016 Sep; 55(37):11069-76. PubMed ID: 27436297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 2,3-Dibutoxynaphthalene-based tetralactam macrocycles for recognizing precious metal chloride complexes.
    Wang LL; Tu YK; Yao H; Jiang W
    Beilstein J Org Chem; 2019; 15():1460-1467. PubMed ID: 31354862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Entropy- and hydrolytic-driven positional switching of macrocycle between imine- and hydrogen-bonding stations in rotaxane-based molecular shuttles.
    Umehara T; Kawai H; Fujiwara K; Suzuki T
    J Am Chem Soc; 2008 Oct; 130(42):13981-8. PubMed ID: 18817381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aggregation-induced emission behavior of a pH-controlled molecular shuttle based on a tetraphenylethene moiety.
    Han X; Cao M; Xu Z; Wu D; Chen Z; Wu A; Liu SH; Yin J
    Org Biomol Chem; 2015 Oct; 13(38):9767-74. PubMed ID: 26284316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metastable doubly threaded [3]rotaxanes with a large macrocycle.
    Hertzog JE; Maddi VJ; Hart LF; Rawe BW; Rauscher PM; Herbert KM; Bruckner EP; de Pablo JJ; Rowan SJ
    Chem Sci; 2022 May; 13(18):5333-5344. PubMed ID: 35655545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iodide-induced shuttling of a halogen- and hydrogen-bonding two-station rotaxane.
    Caballero A; Swan L; Zapata F; Beer PD
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11854-8. PubMed ID: 25213038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational analysis and UV/Vis spectroscopic properties of a rotaxane-based molecular machine in acetonitrile dilute solution: when simulations meet experiments.
    Mancini G; Zazza C; Aschi M; Sanna N
    Phys Chem Chem Phys; 2011 Feb; 13(6):2342-9. PubMed ID: 21132200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward multistation rotaxanes using metalloporphyrin coordination templating.
    Mullen KM; Gunter MJ
    J Org Chem; 2008 May; 73(9):3336-50. PubMed ID: 18393528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A ferrocene-functionalized [2]rotaxane with two fluorophores as stoppers.
    Zhang H; Zhou B; Li H; Qu DH; Tian H
    J Org Chem; 2013 Mar; 78(5):2091-8. PubMed ID: 23106196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. N-benzyltriazolium as both molecular station and barrier in [2]rotaxane molecular machines.
    Busseron E; Coutrot F
    J Org Chem; 2013 Apr; 78(8):4099-106. PubMed ID: 23521611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.