These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26698964)

  • 1. 'Lissajous-like' trajectories in optical tweezers.
    Hay RF; Gibson GM; Simpson SH; Padgett MJ; Phillips DB
    Opt Express; 2015 Dec; 23(25):31716-27. PubMed ID: 26698964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escape forces and trajectories in optical tweezers and their effect on calibration.
    Bui AA; Stilgoe AB; Khatibzadeh N; Nieminen TA; Berns MW; Rubinsztein-Dunlop H
    Opt Express; 2015 Sep; 23(19):24317-30. PubMed ID: 26406637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidepth, multiparticle tracking for active microrheology using a smart camera.
    Silburn SA; Saunter CD; Girkin JM; Love GD
    Rev Sci Instrum; 2011 Mar; 82(3):033712. PubMed ID: 21456756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurement of the nonconservative force field generated by optical tweezers.
    Wu P; Huang R; Tischer C; Jonas A; Florin EL
    Phys Rev Lett; 2009 Sep; 103(10):108101. PubMed ID: 19792342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic flow measurements with optically trapped microprobes.
    Nemet BA; Cronin-Golomb M
    Opt Lett; 2002 Aug; 27(15):1357-9. PubMed ID: 18026449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the micro-rheological properties of aerosol particles using optical tweezers.
    Power RM; Reid JP
    Rep Prog Phys; 2014 Jul; 77(7):074601. PubMed ID: 24994710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimum-variance Brownian motion control of an optically trapped probe.
    Huang Y; Zhang Z; Menq CH
    Appl Opt; 2009 Oct; 48(30):5871-80. PubMed ID: 19844327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic mobility of an optically trapped colloidal particle near fluid-fluid interfaces.
    Wang GM; Prabhakar R; Sevick EM
    Phys Rev Lett; 2009 Dec; 103(24):248303. PubMed ID: 20366238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow.
    Merenda F; Boer G; Rohner J; Delacrétaz G; Salathé RP
    Opt Express; 2006 Feb; 14(4):1685-99. PubMed ID: 19503495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution detection of Brownian motion for quantitative optical tweezers experiments.
    Grimm M; Franosch T; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021912. PubMed ID: 23005790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusive behavior of a thin particle layer in fluid by hydrodynamic interaction.
    Harada S; Otomo R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066311. PubMed ID: 20365271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic-based hydrodynamic trap: design and implementation.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring the complete force field of an optical trap.
    Jahnel M; Behrndt M; Jannasch A; Schäffer E; Grill SW
    Opt Lett; 2011 Apr; 36(7):1260-2. PubMed ID: 21479051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying vorticity in magnetic particle suspensions driven by symmetric and asymmetric multiaxial fields.
    Martin JE; Solis KJ
    Soft Matter; 2015 Sep; 11(36):7130-42. PubMed ID: 26252544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling between axial and radial motions of microscopic particle trapped in the intracavity optical tweezers.
    Xiao G; Kuang T; Luo B; Xiong W; Han X; Chen X; Luo H
    Opt Express; 2019 Dec; 27(25):36653-36661. PubMed ID: 31873439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of optically driven fluid stress fields with optical tweezers.
    Knöner G; Parkin S; Heckenberg NR; Rubinsztein-Dunlop H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031507. PubMed ID: 16241444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-order nonconservative motion of optically trapped nonspherical particles.
    Simpson SH; Hanna S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031141. PubMed ID: 21230059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic Tweezers: Trapping and Transportation in Microscale Using Vortex Induced by Oscillation of a Single Piezoelectric Actuator.
    Liu X; Shi Q; Lin Y; Kojima M; Mae Y; Huang Q; Fukuda T; Arai T
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29932124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pushing the limit: investigation of hydrodynamic forces on a trapped particle kicked by a laser pulse.
    Villadsen N; Andreasen DØ; Hagelskjær J; Thøgersen J; Imparato A; Keiding SR
    Opt Express; 2015 May; 23(10):13141-52. PubMed ID: 26074567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies.
    Lutz BR; Chen J; Schwartz DT
    Anal Chem; 2006 Aug; 78(15):5429-35. PubMed ID: 16878879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.