BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26699052)

  • 1. Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector.
    Yamamoto J; Oura M; Yamashita T; Miki S; Jin T; Haraguchi T; Hiraoka Y; Terai H; Kinjo M
    Opt Express; 2015 Dec; 23(25):32633-42. PubMed ID: 26699052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector.
    Yamashita T; Liu D; Miki S; Yamamoto J; Haraguchi T; Kinjo M; Hiraoka Y; Wang Z; Terai H
    Opt Express; 2014 Nov; 22(23):28783-9. PubMed ID: 25402117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy.
    Singh AP; Krieger JW; Buchholz J; Charbon E; Langowski J; Wohland T
    Opt Express; 2013 Apr; 21(7):8652-68. PubMed ID: 23571955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artifact-Free and Detection-Profile-Independent Higher-Order Fluorescence Correlation Spectroscopy for Microsecond-Resolved Kinetics. 1. Multidetector and Sub-Binning Approach.
    Abdollah-Nia F; Gelfand MP; Van Orden A
    J Phys Chem B; 2017 Mar; 121(11):2373-2387. PubMed ID: 28230994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Detector Spectrometer Using a Superconducting Nanowire.
    Kong L; Zhao Q; Wang H; Guo J; Lu H; Hao H; Guo S; Tu X; Zhang L; Jia X; Kang L; Wu X; Chen J; Wu P
    Nano Lett; 2021 Nov; 21(22):9625-9632. PubMed ID: 34730364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell.
    Oura M; Yamamoto J; Ishikawa H; Mikuni S; Fukushima R; Kinjo M
    Sci Rep; 2016 Aug; 6():31091. PubMed ID: 27489044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science.
    Chen L; Schwarzer D; Verma VB; Stevens MJ; Marsili F; Mirin RP; Nam SW; Wodtke AM
    Acc Chem Res; 2017 Jun; 50(6):1400-1409. PubMed ID: 28573866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanorods as probes in two-photon fluorescence correlation spectroscopy: emerging applications and potential artifacts.
    Wang DS; Wei SC; Liao SC; Lin CW
    Microsc Res Tech; 2013 Sep; 76(9):882-9. PubMed ID: 23749499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially Multiplexed Imaging: Fluorescence Correlation Spectroscopy for Efficient Measurement of Molecular Diffusion at Solid-Liquid Interfaces.
    Cooper JT; Harris JM
    Appl Spectrosc; 2016 Apr; 70(4):695-701. PubMed ID: 26887989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence correlation spectroscopy in living cells.
    Kim SA; Heinze KG; Schwille P
    Nat Methods; 2007 Nov; 4(11):963-73. PubMed ID: 17971781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative evaluation of macromolecular crowding environment based on translational and rotational diffusion using polarization dependent fluorescence correlation spectroscopy.
    Yamamoto J; Matsui A; Gan F; Oura M; Ando R; Matsuda T; Gong JP; Kinjo M
    Sci Rep; 2021 May; 11(1):10594. PubMed ID: 34011998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photobleaching in two-photon scanning fluorescence correlation spectroscopy.
    Petrásek Z; Schwille P
    Chemphyschem; 2008 Jan; 9(1):147-58. PubMed ID: 18072191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence correlation spectroscopy at micromolar concentrations without optical nanoconfinement.
    Laurence TA; Ly S; Bourguet F; Fischer NO; Coleman MA
    J Phys Chem B; 2014 Aug; 118(32):9662-7. PubMed ID: 25060197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths.
    Natarajan CM; Zhang L; Coldenstrodt-Ronge H; Donati G; Dorenbos SN; Zwiller V; Walmsley IA; Hadfield RH
    Opt Express; 2013 Jan; 21(1):893-902. PubMed ID: 23388983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors.
    Becker W; Su B; Holub O; Weisshart K
    Microsc Res Tech; 2011 Sep; 74(9):804-11. PubMed ID: 23939667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells.
    Bulseco DA; Wolf DE
    Methods Cell Biol; 2013; 114():489-524. PubMed ID: 23931520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements.
    Pan X; Foo W; Lim W; Fok MH; Liu P; Yu H; Maruyama I; Wohland T
    Rev Sci Instrum; 2007 May; 78(5):053711. PubMed ID: 17552829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration and limits of camera-based fluorescence correlation spectroscopy: a supported lipid bilayer study.
    Bag N; Sankaran J; Paul A; Kraut RS; Wohland T
    Chemphyschem; 2012 Aug; 13(11):2784-94. PubMed ID: 22615144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-pulse polarization lidar at 1.5  μm using a single superconducting nanowire single-photon detector.
    Qiu J; Xia H; Shangguan M; Dou X; Li M; Wang C; Shang X; Lin S; Liu J
    Opt Lett; 2017 Nov; 42(21):4454-4457. PubMed ID: 29088186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and high efficiency superconducting nanowire single-photon detector at 630  nm wavelength.
    Wang H; Li H; You L; Wang Y; Zhang L; Yang X; Zhang W; Wang Z; Xie X
    Appl Opt; 2019 Mar; 58(8):1868-1872. PubMed ID: 30874050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.