These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26699123)

  • 21. Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor. Cooperative use of lysosomal proteinases and oxygen metabolites.
    Weiss SJ; Regiani S
    J Clin Invest; 1984 May; 73(5):1297-303. PubMed ID: 6325501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Reactive oxygen and nitrogen species in inflammatory process].
    Rutkowski R; Pancewicz SA; Rutkowski K; Rutkowska J
    Pol Merkur Lekarski; 2007 Aug; 23(134):131-6. PubMed ID: 18044345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ROS and RNS in plant physiology: an overview.
    Del Río LA
    J Exp Bot; 2015 May; 66(10):2827-37. PubMed ID: 25873662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of active oxygen species scavengers on fibrinolytic activity of some proteinases.
    Pyzhova NS; Nikandrov VN; Nikandrov NN
    Thromb Res; 1996 May; 82(4):303-12. PubMed ID: 8743726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidized caprine alpha-2-macroglobulin: damaged but not completely dysfunctional.
    Khan SA; Khan FH
    Biochim Biophys Acta; 2004 Sep; 1674(2):139-48. PubMed ID: 15374618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactive oxygen species: the root cause of nanoparticle-induced toxicity in
    Mishra M; Panda M
    Free Radic Res; 2021 Jun; 55(6):671-687. PubMed ID: 33877010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of antioxidant activity of taurine in diabetes.
    Schaffer SW; Azuma J; Mozaffari M
    Can J Physiol Pharmacol; 2009 Feb; 87(2):91-9. PubMed ID: 19234572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The comparative study of reactive oxygen species generated by polymorphonuclear leukocytes as alpha 1-proteinase inhibitor inactivators-possible application for antioxidant prevention of emphysema.
    Nowak D
    Arch Immunol Ther Exp (Warsz); 1988; 36(6):723-31. PubMed ID: 3075884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbocisteine can scavenge reactive oxygen species in vitro.
    Nogawa H; Ishibashi Y; Ogawa A; Masuda K; Tsubuki T; Kameda T; Matsuzawa S
    Respirology; 2009 Jan; 14(1):53-9. PubMed ID: 19144049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Parameters of plasma blood proteolysis and phenotypes of alpha1-proteinase inhibitor in children with duodenal ulcer].
    Akbasheva OE
    Biomed Khim; 2007; 53(3):338-44. PubMed ID: 17722585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protease-mediated house dust mite allergen-induced reactive oxygen species production by neutrophils.
    Fukunaga M; Gon Y; Nunomura S; Inoue T; Yoshioka M; Hashimoto S; Ra C
    Int Arch Allergy Immunol; 2011; 155 Suppl 1():104-9. PubMed ID: 21646804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. alpha(2)-Macroglobulin from rheumatoid arthritis synovial fluid: functional analysis defines a role for oxidation in inflammation.
    Wu SM; Pizzo SV
    Arch Biochem Biophys; 2001 Jul; 391(1):119-26. PubMed ID: 11414692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Possible significance of free oxygen radicals for reperfusion injury].
    Becker BF; Massoudy P; Permanetter B; Raschke P; Zahler S
    Z Kardiol; 1993; 82 Suppl 5():49-58. PubMed ID: 8154162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review of the interaction among dietary antioxidants and reactive oxygen species.
    Seifried HE; Anderson DE; Fisher EI; Milner JA
    J Nutr Biochem; 2007 Sep; 18(9):567-79. PubMed ID: 17360173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial proteolysis: its emerging roles in stress responses.
    Sekine S; Ichijo H
    Biochim Biophys Acta; 2015 Feb; 1850(2):274-80. PubMed ID: 25459516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scavenging of reactive oxygen species as the mechanism of drug action.
    Robak J; Marcinkiewicz E
    Pol J Pharmacol; 1995; 47(2):89-98. PubMed ID: 8688896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reactive oxygen species sources and biomolecular oxidative damage induced by aflatoxin B1 and fumonisin B1 in rat spleen mononuclear cells.
    Mary VS; Theumer MG; Arias SL; Rubinstein HR
    Toxicology; 2012 Dec; 302(2-3):299-307. PubMed ID: 22981896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein oxidation in aging and the removal of oxidized proteins.
    Höhn A; König J; Grune T
    J Proteomics; 2013 Oct; 92():132-59. PubMed ID: 23333925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.