These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26699337)

  • 1. Occurrence of Transgenic Feral Alfalfa (Medicago sativa subsp. sativa L.) in Alfalfa Seed Production Areas in the United States.
    Greene SL; Kesoju SR; Martin RC; Kramer M
    PLoS One; 2015; 10(12):e0143296. PubMed ID: 26699337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of alfalfa (Medicago sativa L.) populations along roadsides in southern Manitoba, Canada and their potential role in intraspecific gene flow.
    Bagavathiannan MV; Gulden RH; Van Acker RC
    Transgenic Res; 2011 Apr; 20(2):397-407. PubMed ID: 20635142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenes and national boundaries - The need for international regulation.
    Bagavathiannan M; Van Acker R
    Environ Biosafety Res; 2009; 8(3):141-8. PubMed ID: 20028616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene flow in commercial alfalfa (Medicago sativa subsp. sativa L.) seed production fields: Distance is the primary but not the sole influence on adventitious presence.
    Kesoju SR; Kramer M; Brunet J; Greene SL; Jordan A; Martin RC
    PLoS One; 2021; 16(3):e0248746. PubMed ID: 33765070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Migratory Bee Hive Transportation Contributes Insignificantly to Transgenic Pollen Movement Between Spatially Isolated Alfalfa Seed Fields.
    Boyle NK; Kesoju SR; Greene SL; Martin RC; Walsh DB
    J Econ Entomol; 2017 Feb; 110(1):6-12. PubMed ID: 28204486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement.
    Zhou C; Han L; Pislariu C; Nakashima J; Fu C; Jiang Q; Quan L; Blancaflor EB; Tang Y; Bouton JH; Udvardi M; Xia G; Wang ZY
    Plant Physiol; 2011 Nov; 157(3):1483-96. PubMed ID: 21957014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation.
    Zhang WJ; Wang T
    Plant Sci; 2015 May; 234():110-8. PubMed ID: 25804814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximizing the expression of transgenic traits into elite alfalfa germplasm using a supertransgene configuration in heterozygous conditions.
    Jozefkowicz C; Frare R; Fox R; Odorizzi A; Arolfo V; Pagano E; Basigalup D; Ayub N; Soto G
    Theor Appl Genet; 2018 May; 131(5):1111-1123. PubMed ID: 29397404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snake River alfalfa virus, a persistent virus infecting alfalfa (Medicago sativa L.) in Washington State, USA.
    Postnikova OA; Irish BM; Eisenback J; Nemchinov LG
    Virol J; 2023 Feb; 20(1):32. PubMed ID: 36803436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landscape-scale distribution and persistence of genetically modified oilseed rape (Brassica napus) in Manitoba, Canada.
    Knispel AL; McLachlan SM
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):13-25. PubMed ID: 19588180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersal and persistence of genetically modified oilseed rape around Japanese harbors.
    Kawata M; Murakami K; Ishikawa T
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):120-6. PubMed ID: 19050951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential ability of three bee species to move genes via pollen.
    Fragoso FP; Brunet J
    PLoS One; 2023; 18(4):e0271780. PubMed ID: 37053245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the dynamics of feral alfalfa populations and its management implications.
    Bagavathiannan MV; Begg GS; Gulden RH; Van Acker RC
    PLoS One; 2012; 7(6):e39440. PubMed ID: 22768079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).
    Zhang J; Duan Z; Zhang D; Zhang J; Di H; Wu F; Wang Y
    Biochem Biophys Res Commun; 2016 Mar; 472(1):75-82. PubMed ID: 26906624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The demography of feral alfalfa (Medicago sativa L.) populations occurring in roadside habitats in Southern Manitoba, Canada: implications for novel trait confinement.
    Bagavathiannan MV; Gulden RH; Begg GS; Van Acker RC
    Environ Sci Pollut Res Int; 2010 Sep; 17(8):1448-59. PubMed ID: 20393805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic Diversity of Oilseed Rape Fields and Feral Populations in the Context of Coexistence with GM Crops.
    Bailleul D; Ollier S; Lecomte J
    PLoS One; 2016; 11(6):e0158403. PubMed ID: 27359342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alfalfa (Medicago sativa L.).
    Fu C; Hernandez T; Zhou C; Wang ZY
    Methods Mol Biol; 2015; 1223():213-21. PubMed ID: 25300843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preservation and faithful expression of transgene via artificial seeds in alfalfa.
    Liu W; Liang Z; Wang X; Sibbald S; Hunter D; Tian L
    PLoS One; 2013; 8(5):e56699. PubMed ID: 23690914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of glyphosate-resistant alfalfa (Medicago sativa L.) upon transformation with the GR79Ms gene encoding 5-enolpyruvylshikimate-3-phosphate synthase.
    Yi D; Ma L; Lin M; Li C
    Planta; 2018 Jul; 248(1):211-219. PubMed ID: 29687223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa.
    Gou J; Debnath S; Sun L; Flanagan A; Tang Y; Jiang Q; Wen J; Wang ZY
    Plant Biotechnol J; 2018 Apr; 16(4):951-962. PubMed ID: 28941083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.