BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2669954)

  • 1. Comparison of solution structural flexibility and zinc binding domains for insulin, proinsulin, and miniproinsulin.
    Kaarsholm NC; Ko HC; Dunn MF
    Biochemistry; 1989 May; 28(10):4427-35. PubMed ID: 2669954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions.
    Rahuel-Clermont S; French CA; Kaarsholm NC; Dunn MF; Chou CI
    Biochemistry; 1997 May; 36(19):5837-45. PubMed ID: 9153424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of calcium ion on ternary complexes formed between 4-(2-pyridylazo)resorcinol and the two-zinc insulin hexamer.
    Kaarsholm NC; Dunn MF
    Biochemistry; 1987 Feb; 26(3):883-90. PubMed ID: 3552036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A solution equivalent of the 2Zn----4Zn transformation of insulin in the crystal.
    Renscheidt H; Strassburger W; Glatter U; Wollmer A; Dodson GG; Mercola DA
    Eur J Biochem; 1984 Jul; 142(1):7-14. PubMed ID: 6378635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural transition in the metal-free hexamer of protein-engineered [B13 Gln]insulin.
    Wollmer A; Rannefeld B; Stahl J; Melberg SG
    Biol Chem Hoppe Seyler; 1989 Sep; 370(9):1045-53. PubMed ID: 2692616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural asymmetry and half-site reactivity in the T to R allosteric transition of the insulin hexamer.
    Brzović PS; Choi WE; Borchardt D; Kaarsholm NC; Dunn MF
    Biochemistry; 1994 Nov; 33(44):13057-69. PubMed ID: 7947711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallographic evidence for dual coordination around zinc in the T3R3 human insulin hexamer.
    Ciszak E; Smith GD
    Biochemistry; 1994 Feb; 33(6):1512-7. PubMed ID: 8312271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mini-proinsulin and mini-IGF-I: homologous protein sequences encoding non-homologous structures.
    Hua QX; Hu SQ; Jia W; Chu YC; Burke GT; Wang SH; Wang RY; Katsoyannis PG; Weiss MA
    J Mol Biol; 1998 Mar; 277(1):103-18. PubMed ID: 9514738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Glu(B13) carboxylates of the insulin hexamer form a cage for Cd2+ and Ca2+ ions.
    Storm MC; Dunn MF
    Biochemistry; 1985 Mar; 24(7):1749-56. PubMed ID: 2860921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1H Fourier transform NMR studies of insulin: coordination of Ca2+ to the Glu(B13) site drives hexamer assembly and induces a conformation change.
    Palmieri R; Lee RW; Dunn MF
    Biochemistry; 1988 May; 27(9):3387-97. PubMed ID: 2898949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic measurements of T----R structural transitions in insulin.
    Karataş Y; Krüger P; Wollmer A
    Biol Chem Hoppe Seyler; 1991 Dec; 372(12):1035-8. PubMed ID: 1789928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical modeling of phenolic ligand binding to 2Zn--insulin hexamers.
    Birnbaum DT; Dodd SW; Saxberg BE; Varshavsky AD; Beals JM
    Biochemistry; 1996 Apr; 35(17):5366-78. PubMed ID: 8611526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The R-state proinsulin and insulin hexamers mimic the carbonic anhydrase active site.
    Brader ML; Kaarsholm NC; Dunn MF
    J Biol Chem; 1990 Sep; 265(26):15666-70. PubMed ID: 2118529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the nature of the interaction of insulin and proinsulin with zinc.
    Grant PT; Coombs TL; Frank BH
    Biochem J; 1972 Jan; 126(2):433-40. PubMed ID: 5062309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray structure of an unusual Ca2+ site and the roles of Zn2+ and Ca2+ in the assembly, stability, and storage of the insulin hexamer.
    Hill CP; Dauter Z; Dodson EJ; Dodson GG; Dunn MF
    Biochemistry; 1991 Jan; 30(4):917-24. PubMed ID: 1671209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of divalent metal ion chelator induced activation of the 7S nerve growth factor esteropeptidase. Activation by 2,2',2''-terpyridine and by 8-hydroxyquinoline 5-sulfonic acid.
    Pattison SE; Dunn MF
    Biochemistry; 1976 Aug; 15(17):3691-6. PubMed ID: 821522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin-metal ion interactions: the binding of divalent cations to insulin hexamers and tetramers and the assembly of insulin hexamers.
    Coffman FD; Dunn MF
    Biochemistry; 1988 Aug; 27(16):6179-87. PubMed ID: 3056521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell.
    Emdin SO; Dodson GG; Cutfield JM; Cutfield SM
    Diabetologia; 1980 Sep; 19(3):174-82. PubMed ID: 6997118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalt probing of structural alternatives for insulin in solution.
    Thomas B; Wollmer A
    Biol Chem Hoppe Seyler; 1989 Dec; 370(12):1235-44. PubMed ID: 2695115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural signatures of the complex formed between 3-nitro-4-hydroxybenzoate and the Zn(II)-substituted R(6) insulin hexamer.
    Olsen HB; Leuenberger-Fisher MR; Kadima W; Borchardt D; Kaarsholm NC; Dunn MF
    Protein Sci; 2003 Sep; 12(9):1902-13. PubMed ID: 12930990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.