BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2669960)

  • 1. Fluorescent oligonucleotides and deoxynucleotide triphosphates: preparation and their interaction with the large (Klenow) fragment of Escherichia coli DNA polymerase I.
    Allen DJ; Darke PL; Benkovic SJ
    Biochemistry; 1989 May; 28(11):4601-7. PubMed ID: 2669960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligonucleotides labeled with single fluorophores as sensors for deoxynucleotide triphosphate binding by DNA polymerases.
    Nikiforov TT
    Anal Biochem; 2014 Jan; 444():60-6. PubMed ID: 24096197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-Hydroxypyrimidine deoxynucleoside triphosphates are more efficiently incorporated into DNA by exonuclease-free Klenow fragment than 8-oxopurine deoxynucleoside triphosphates.
    Purmal AA; Kow YW; Wallace SS
    Nucleic Acids Res; 1994 Sep; 22(19):3930-5. PubMed ID: 7937115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitation of cellular deoxynucleoside triphosphates.
    Ferraro P; Franzolin E; Pontarin G; Reichard P; Bianchi V
    Nucleic Acids Res; 2010 Apr; 38(6):e85. PubMed ID: 20008099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance energy transfer measurements between substrate binding sites within the large (Klenow) fragment of Escherichia coli DNA polymerase I.
    Allen DJ; Benkovic SJ
    Biochemistry; 1989 Dec; 28(25):9586-93. PubMed ID: 2692712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase.
    Frey MW; Sowers LC; Millar DP; Benkovic SJ
    Biochemistry; 1995 Jul; 34(28):9185-92. PubMed ID: 7619819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The efficiency of interaction of deoxyribonucleoside-5'-mono-, di- and triphosphates with the active centre of E. coli DNA polymerase I Klenow fragment.
    Doronin SV; Nevinsky GA; Malygina TO; Podust VN; Khomov VV; Lavrik OI
    FEBS Lett; 1989 Dec; 259(1):83-5. PubMed ID: 2689231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site.
    Moore BM; Jalluri RK; Doughty MB
    Biochemistry; 1996 Sep; 35(36):11642-51. PubMed ID: 8794744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (Klenow fragment).
    Purohit V; Grindley ND; Joyce CM
    Biochemistry; 2003 Sep; 42(34):10200-11. PubMed ID: 12939148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of Escherichia coli DNA polymerase I with azidoDNA and fluorescent DNA probes: identification of protein-DNA contacts.
    Catalano CE; Allen DJ; Benkovic SJ
    Biochemistry; 1990 Apr; 29(15):3612-21. PubMed ID: 2187527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for sample labeling and meniscus determination in the fluorescence-detected analytical ultracentrifuge.
    Bailey MF; Angley LM; Perugini MA
    Anal Biochem; 2009 Jul; 390(2):218-20. PubMed ID: 19348779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of DNA with the Klenow fragment of DNA polymerase I studied by time-resolved fluorescence spectroscopy.
    Guest CR; Hochstrasser RA; Dupuy CG; Allen DJ; Benkovic SJ; Millar DP
    Biochemistry; 1991 Sep; 30(36):8759-70. PubMed ID: 1888736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection.
    Garalde DR; Simon CA; Dahl JM; Wang H; Akeson M; Lieberman KR
    J Biol Chem; 2011 Apr; 286(16):14480-92. PubMed ID: 21362617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA synthesis on discontinuous templates by DNA polymerase I of Escherichia coli.
    Clark JM
    Gene; 1991 Jul; 104(1):75-80. PubMed ID: 1916280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I.
    Carver TE; Millar DP
    Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of 5'-nearest neighbors on the insertion kinetics of the fluorescent nucleotide analog 2-aminopurine by Klenow fragment.
    Bloom LB; Otto MR; Beechem JM; Goodman MF
    Biochemistry; 1993 Oct; 32(41):11247-58. PubMed ID: 8218190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG; Guengerich FP
    Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoaffinity labeling of the thymidine triphosphate binding domain in Escherichia coli DNA polymerase I: identification of histidine-881 as the site of cross-linking.
    Pandey VN; Williams KR; Stone KL; Modak MJ
    Biochemistry; 1987 Dec; 26(24):7744-8. PubMed ID: 3322406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.
    Bailey MF; Van der Schans EJ; Millar DP
    Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and amino acid sequence of the deoxynucleoside triphosphate binding site in Escherichia coli DNA polymerase I.
    Basu A; Modak MJ
    Biochemistry; 1987 Mar; 26(6):1704-9. PubMed ID: 3297133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.