These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 2669971)

  • 41. Primary structure requirements for in vivo activity and bidirectional function of the transcription terminator shared by the oppositely oriented skc/rel-orf1 genes of Streptococcus equisimilis H46A.
    Steiner K; Malke H
    Mol Gen Genet; 1997 Aug; 255(6):611-8. PubMed ID: 9323365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcript RNA having trans-acting antitermination activity on the T7 transcription terminator.
    Lee JT; Kang C
    Biochem Int; 1992 Feb; 26(1):163-9. PubMed ID: 1616491
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mutant rho factors with increased transcription termination activities. I. Functional correlations of the primary and secondary polynucleotide binding sites with the efficiency and site-selectivity of rho-dependent termination.
    Tsurushita N; Shigesada K; Imai M
    J Mol Biol; 1989 Nov; 210(1):23-37. PubMed ID: 2479756
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of cooperation between translating ribosome and RNA polymerase on termination efficiency of the Rho-independent terminator.
    Li R; Zhang Q; Li J; Shi H
    Nucleic Acids Res; 2016 Apr; 44(6):2554-63. PubMed ID: 26602687
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Termination and slippage by bacteriophage T7 RNA polymerase.
    Macdonald LE; Zhou Y; McAllister WT
    J Mol Biol; 1993 Aug; 232(4):1030-47. PubMed ID: 8371265
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification and characterization of a new transcriptional termination factor from Escherichia coli.
    Briat JF; Chamberlin MJ
    Proc Natl Acad Sci U S A; 1984 Dec; 81(23):7373-7. PubMed ID: 6095288
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GreA-induced transcript cleavage in transcription complexes containing Escherichia coli RNA polymerase is controlled by multiple factors, including nascent transcript location and structure.
    Feng GH; Lee DN; Wang D; Chan CL; Landick R
    J Biol Chem; 1994 Sep; 269(35):22282-94. PubMed ID: 8071355
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential contributions of two elements of rho-independent terminator to transcription termination and mRNA stabilization.
    Abe H; Aiba H
    Biochimie; 1996; 78(11-12):1035-42. PubMed ID: 9150882
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of Escherichia coli Nus A protein on transcription termination in vitro are not increased or decreased by DNA sequences sufficient for antitermination in vivo.
    Sigmund CD; Morgan EA
    Biochemistry; 1988 Jul; 27(15):5628-35. PubMed ID: 2846045
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multigene expression in vivo: supremacy of large versus small terminators for T7 RNA polymerase.
    Du L; Villarreal S; Forster AC
    Biotechnol Bioeng; 2012 Apr; 109(4):1043-50. PubMed ID: 22094962
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of the complex transcription termination region of the Escherichia coli rrnB gene.
    Orosz A; Boros I; Venetianer P
    Eur J Biochem; 1991 Nov; 201(3):653-9. PubMed ID: 1718749
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcription from bacteriophage T7 and SP6 RNA polymerase promoters in the presence of 3'-deoxyribonucleoside 5'-triphosphate chain terminators.
    Axelrod VD; Kramer FR
    Biochemistry; 1985 Oct; 24(21):5716-23. PubMed ID: 3002422
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and characterization of transcription termination sites in the Escherichia coli lacZ gene.
    Ruteshouser EC; Richardson JP
    J Mol Biol; 1989 Jul; 208(1):23-43. PubMed ID: 2475637
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7.
    Masters BS; Stohl LL; Clayton DA
    Cell; 1987 Oct; 51(1):89-99. PubMed ID: 3308116
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of two types of termination signal for bacteriophage T7 RNA polymerase.
    Macdonald LE; Durbin RK; Dunn JJ; McAllister WT
    J Mol Biol; 1994 Apr; 238(2):145-58. PubMed ID: 8158645
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Control sites in the sequence at the beginning of T7 gene 1.
    McConnell DJ
    Nucleic Acids Res; 1979 Aug; 6(11):3491-503. PubMed ID: 493111
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transcriptional termination sequence at the end of the Escherichia coli ribosomal RNA G operon: complex terminators and antitermination.
    Albrechtsen B; Ross BM; Squires C; Squires CL
    Nucleic Acids Res; 1991 Apr; 19(8):1845-52. PubMed ID: 1709493
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Factor-independent termination of transcription in a stretch of deoxyadenosine residues in the template DNA.
    Tomizawa J; Masukata H
    Cell; 1987 Nov; 51(4):623-30. PubMed ID: 2445490
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Termination of transcription of the coliphage T7 "early" operon in vitro: slowness of enzyme release, and lack of any role for sigma.
    O'Hare KM; Hayward RS
    Nucleic Acids Res; 1981 Sep; 9(18):4689-707. PubMed ID: 6795594
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Escherichia coli RNA polymerase mutations located near the upstream edge of an RNA:DNA hybrid and the beginning of the RNA-exit channel are defective for transcription antitermination by the N protein from lambdoid phage H-19B.
    Cheeran A; Babu Suganthan R; Swapna G; Bandey I; Achary MS; Nagarajaram HA; Sen R
    J Mol Biol; 2005 Sep; 352(1):28-43. PubMed ID: 16061258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.