These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 26699732)

  • 1. Recent advances in engineering nonribosomal peptide assembly lines.
    Winn M; Fyans JK; Zhuo Y; Micklefield J
    Nat Prod Rep; 2016 Feb; 33(2):317-47. PubMed ID: 26699732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chapter 14. Biosynthesis of nonribosomal peptide precursors.
    Wilkinson B; Micklefield J
    Methods Enzymol; 2009; 458():353-78. PubMed ID: 19374990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Fungal Nonribosomal Peptide Synthetase-like Enzymes by Heterologous Expression and Domain Swapping.
    van Dijk JW; Guo CJ; Wang CC
    Org Lett; 2016 Dec; 18(24):6236-6239. PubMed ID: 27978657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the biosynthesis of fungal nonribosomal peptides.
    Zhang L; Wang C; Chen K; Zhong W; Xu Y; Molnár I
    Nat Prod Rep; 2023 Jan; 40(1):62-88. PubMed ID: 35796260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis and engineering of the nonribosomal peptides with a C-terminal putrescine.
    Chen H; Zhong L; Zhou H; Bai X; Sun T; Wang X; Zhao Y; Ji X; Tu Q; Zhang Y; Bian X
    Nat Commun; 2023 Oct; 14(1):6619. PubMed ID: 37857663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guidelines for Optimizing Type S Nonribosomal Peptide Synthetases.
    Abbood N; Effert J; Bozhueyuek KAJ; Bode HB
    ACS Synth Biol; 2023 Aug; 12(8):2432-2443. PubMed ID: 37523786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis.
    Labby KJ; Watsula SG; Garneau-Tsodikova S
    Nat Prod Rep; 2015 May; 32(5):641-53. PubMed ID: 25622971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desymmetrization of Cyclodepsipeptides by Assembly Mode Switching of Iterative Nonribosomal Peptide Synthetases.
    Steiniger C; Hoffmann S; Süssmuth RD
    ACS Synth Biol; 2019 Apr; 8(4):661-667. PubMed ID: 30862156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonribosomal biosynthesis of backbone-modified peptides.
    Niquille DL; Hansen DA; Mori T; Fercher D; Kries H; Hilvert D
    Nat Chem; 2018 Mar; 10(3):282-287. PubMed ID: 29461527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naphthyridinomycin biosynthesis revealing the use of leader peptide to guide nonribosomal peptide assembly.
    Pu JY; Peng C; Tang MC; Zhang Y; Guo JP; Song LQ; Hua Q; Tang GL
    Org Lett; 2013 Jul; 15(14):3674-7. PubMed ID: 23841701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines.
    Walsh CT; Chen H; Keating TA; Hubbard BK; Losey HC; Luo L; Marshall CG; Miller DA; Patel HM
    Curr Opin Chem Biol; 2001 Oct; 5(5):525-34. PubMed ID: 11578925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A subdomain swap strategy for reengineering nonribosomal peptides.
    Kries H; Niquille DL; Hilvert D
    Chem Biol; 2015 May; 22(5):640-8. PubMed ID: 26000750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization of a PCP-R didomain from an archaeal nonribosomal peptide synthetase reveals novel interdomain interactions.
    Deshpande S; Altermann E; Sarojini V; Lott JS; Lee TV
    J Biol Chem; 2021; 296():100432. PubMed ID: 33610550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonribosomal Peptide Synthesis-Principles and Prospects.
    Süssmuth RD; Mainz A
    Angew Chem Int Ed Engl; 2017 Mar; 56(14):3770-3821. PubMed ID: 28323366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics.
    Kaniusaite M; Tailhades J; Kittilä T; Fage CD; Goode RJA; Schittenhelm RB; Cryle MJ
    FEBS J; 2021 Jan; 288(2):507-529. PubMed ID: 32359003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Engineering of Nonribosomal Extension Modules.
    Camus A; Gantz M; Hilvert D
    ACS Chem Biol; 2023 Dec; 18(12):2516-2523. PubMed ID: 37983914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Engineered Synthetic Pathway for Discovering Nonnatural Nonribosomal Peptides in
    Cleto S; Lu TK
    mBio; 2017 Oct; 8(5):. PubMed ID: 29018120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Structural Data Reveal the Motion of Carrier Proteins in Nonribosomal Peptide Synthesis.
    Kittilä T; Mollo A; Charkoudian LK; Cryle MJ
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9834-40. PubMed ID: 27435901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metagenomic domain substitution for the high-throughput modification of nonribosomal peptides.
    Messenger SR; McGuinniety EMR; Stevenson LJ; Owen JG; Challis GL; Ackerley DF; Calcott MJ
    Nat Chem Biol; 2024 Feb; 20(2):251-260. PubMed ID: 37996631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond Toxin Transport: Novel Role of ABC Transporter for Enzymatic Machinery of Cereulide NRPS Assembly Line.
    Gacek-Matthews A; Chromiková Z; Sulyok M; Lücking G; Barák I; Ehling-Schulz M
    mBio; 2020 Sep; 11(5):. PubMed ID: 32994334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.