BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26699756)

  • 1. Genomic Barcode-Based Analysis of Exoelectrogens in Wastewater Biofilms Grown on Anode Surfaces.
    Dolch K; Wuske J; Gescher J
    J Microbiol Biotechnol; 2016 Mar; 26(3):511-20. PubMed ID: 26699756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The performance of microbial anodes in municipal wastewater: Pre-grown multispecies biofilm vs. natural inocula.
    Madjarov J; Prokhorova A; Messinger T; Gescher J; Kerzenmacher S
    Bioresour Technol; 2016 Dec; 221():165-171. PubMed ID: 27639235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.
    Prokhorova A; Sturm-Richter K; Doetsch A; Gescher J
    Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Community analysis of biofilms on flame-oxidized stainless steel anodes in microbial fuel cells fed with different substrates.
    Eyiuche NJ; Asakawa S; Yamashita T; Ikeguchi A; Kitamura Y; Yokoyama H
    BMC Microbiol; 2017 Jun; 17(1):145. PubMed ID: 28662640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.
    Kitayama M; Koga R; Kasai T; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Electricity from microorganisms].
    Debabov VG
    Mikrobiologiia; 2008; 77(2):149-57. PubMed ID: 18522314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of microbial fuel cells for electricity generation from oil-contaminated wastewater.
    Hamamoto K; Miyahara M; Kouzuma A; Matsumoto A; Yoda M; Ishiguro T; Watanabe K
    J Biosci Bioeng; 2016 Nov; 122(5):589-593. PubMed ID: 27143587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater.
    Commault AS; Lear G; Weld RJ
    Bioelectrochemistry; 2015 Dec; 106(Pt A):150-8. PubMed ID: 25935865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Microbial fuel cells as an alternative power supply].
    Il'in VK; Smirnov IA; Soldatov PÉ; Korshunov DV; Tiurin-Kuz'min AIu; Starkova LV; Chumakov PE; Emel'ianova LK; Novikova LM; Debabov VG; Voeĭkova TA
    Aviakosm Ekolog Med; 2012; 46(1):62-7. PubMed ID: 22629587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.
    Li F; Yin C; Sun L; Li Y; Guo X; Song H
    Biotechnol J; 2018 May; 13(5):e1700491. PubMed ID: 29044893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial nanowires for bioenergy applications.
    Malvankar NS; Lovley DR
    Curr Opin Biotechnol; 2014 Jun; 27():88-95. PubMed ID: 24863901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anode macrostructures influence electricity generation in microbial fuel cells for wastewater treatment.
    Ishii Y; Miyahara M; Watanabe K
    J Biosci Bioeng; 2017 Jan; 123(1):91-95. PubMed ID: 27514908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial community composition and electricity generation in cattle manure slurry treatment using microbial fuel cells: effects of inoculum addition.
    Xie B; Gong W; Ding A; Yu H; Qu F; Tang X; Yan Z; Li G; Liang H
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23226-23235. PubMed ID: 28831702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of microbial current production as a function of microbe-electrode-interaction.
    Dolch K; Danzer J; Kabbeck T; Bierer B; Erben J; Förster AH; Maisch J; Nick P; Kerzenmacher S; Gescher J
    Bioresour Technol; 2014 Apr; 157():284-92. PubMed ID: 24566287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anode amendment with kaolin and activated carbon increases electricity generation in a microbial fuel cell.
    Hirsch LO; Dubrovin IA; Gandu B; Emanuel E; Kjellerup BV; Ugur GE; Schechter A; Cahan R
    Bioelectrochemistry; 2023 Oct; 153():108486. PubMed ID: 37302334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stratified microbial structure and activity within anode biofilm during electrochemically assisted brewery wastewater treatment.
    Mai Q; Yang G; Cao J; Zhang X; Zhuang L
    Biotechnol Bioeng; 2020 Jul; 117(7):2023-2031. PubMed ID: 32208520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial electricity generation via microfluidic flow control.
    Li Z; Zhang Y; LeDuc PR; Gregory KB
    Biotechnol Bioeng; 2011 Sep; 108(9):2061-9. PubMed ID: 21495007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbially reduced graphene oxide shows efficient electricity ecovery from artificial dialysis wastewater.
    Goto Y; Yoshida N
    J Gen Appl Microbiol; 2017 Jul; 63(3):165-171. PubMed ID: 28484115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells.
    Gao C; Wang A; Wu WM; Yin Y; Zhao YG
    Bioresour Technol; 2014 Sep; 167():124-32. PubMed ID: 24973773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convergent development of anodic bacterial communities in microbial fuel cells.
    Yates MD; Kiely PD; Call DF; Rismani-Yazdi H; Bibby K; Peccia J; Regan JM; Logan BE
    ISME J; 2012 Nov; 6(11):2002-13. PubMed ID: 22572637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.