These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 26699843)
21. Unsymmetrical dizinc complexes as models for the active sites of phosphohydrolases. Jarenmark M; Csapó E; Singh J; Wöckel S; Farkas E; Meyer F; Haukka M; Nordlander E Dalton Trans; 2010 Sep; 39(35):8183-94. PubMed ID: 20683537 [TBL] [Abstract][Full Text] [Related]
22. Promiscuity in alkaline phosphatase superfamily. Unraveling evolution through molecular simulations. López-Canut V; Roca M; Bertrán J; Moliner V; Tuñón I J Am Chem Soc; 2011 Aug; 133(31):12050-62. PubMed ID: 21609015 [TBL] [Abstract][Full Text] [Related]
23. Enzymatic kinetic parameters for polyfluorinated alkyl phosphate hydrolysis by alkaline phosphatase. Jackson DA; Mabury SA Environ Toxicol Chem; 2012 Sep; 31(9):1966-71. PubMed ID: 22714665 [TBL] [Abstract][Full Text] [Related]
24. Mechanistic investigation of the cleavage of phosphodiester catalyzed by a symmetrical oxyimine-based macrocyclic dinuclear zinc complex: a DFT study. Zhang X; Zheng X; Phillips DL; Zhao C Dalton Trans; 2014 Nov; 43(43):16289-99. PubMed ID: 25141046 [TBL] [Abstract][Full Text] [Related]
25. Trapping and visualization of a covalent enzyme-phosphate intermediate. Murphy JE; Stec B; Ma L; Kantrowitz ER Nat Struct Biol; 1997 Aug; 4(8):618-22. PubMed ID: 9253408 [TBL] [Abstract][Full Text] [Related]
26. Isostructural dinuclear phenoxo-/acetato-bridged manganese(II), cobalt(II), and zinc(II) complexes with labile sites: kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate. Arora H; Barman SK; Lloret F; Mukherjee R Inorg Chem; 2012 May; 51(10):5539-53. PubMed ID: 22536852 [TBL] [Abstract][Full Text] [Related]
27. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution. Zalatan JG; Fenn TD; Brunger AT; Herschlag D Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180 [TBL] [Abstract][Full Text] [Related]
28. Spectroscopic and catalytic characterization of a functional Fe(III)Fe(II) biomimetic for the active site of uteroferrin and protein cleavage. Smith SJ; Peralta RA; Jovito R; Horn A; Bortoluzzi AJ; Noble CJ; Hanson GR; Stranger R; Jayaratne V; Cavigliasso G; Gahan LR; Schenk G; Nascimento OR; Cavalett A; Bortolotto T; Razzera G; Terenzi H; Neves A; Riley MJ Inorg Chem; 2012 Feb; 51(4):2065-78. PubMed ID: 22289382 [TBL] [Abstract][Full Text] [Related]
29. Generality of solvation effects on the hydrolysis rates of phosphate monoesters and their possible relevance to enzymatic catalysis. Grzyska PK; Czyryca PG; Golightly J; Small K; Larsen P; Hoff RH; Hengge AC J Org Chem; 2002 Feb; 67(4):1214-20. PubMed ID: 11846665 [TBL] [Abstract][Full Text] [Related]
30. Ligand-binding and metal-exchange crystallographic studies on shrimp alkaline phosphatase. de Backer MM; McSweeney S; Lindley PF; Hough E Acta Crystallogr D Biol Crystallogr; 2004 Sep; 60(Pt 9):1555-61. PubMed ID: 15333925 [TBL] [Abstract][Full Text] [Related]
31. The Goldilocks principle in action: synthesis and structural characterization of a novel {Cu4(μ3-OH)4} cubane stabilized by monodentate ligands. Ardizzoia GA; Brenna S; Durini S; Therrien B; Trentin I Dalton Trans; 2013 Sep; 42(34):12265-73. PubMed ID: 23846198 [TBL] [Abstract][Full Text] [Related]
32. Phosphoester hydrolysis: the incoming substrate turns the bridging hydroxido nucleophile into a terminal one. Gouré E; Carboni M; Troussier A; Lebrun C; Pécaut J; Jacquot JF; Dubourdeaux P; Clémancey M; Blondin G; Latour JM Chemistry; 2015 May; 21(22):8064-8. PubMed ID: 25892481 [TBL] [Abstract][Full Text] [Related]
33. Altered mechanisms of reactions of phosphate esters bridging a dinuclear metal center. Humphry T; Forconi M; Williams NH; Hengge AC J Am Chem Soc; 2004 Sep; 126(38):11864-9. PubMed ID: 15382921 [TBL] [Abstract][Full Text] [Related]
34. Coordination sphere of the third metal site is essential to the activity and metal selectivity of alkaline phosphatases. Koutsioulis D; Lyskowski A; Mäki S; Guthrie E; Feller G; Bouriotis V; Heikinheimo P Protein Sci; 2010 Jan; 19(1):75-84. PubMed ID: 19916164 [TBL] [Abstract][Full Text] [Related]
35. In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase. Jackson CJ; Foo JL; Kim HK; Carr PD; Liu JW; Salem G; Ollis DL J Mol Biol; 2008 Feb; 375(5):1189-96. PubMed ID: 18082180 [TBL] [Abstract][Full Text] [Related]
36. Challenges and advances in the computational modeling of biological phosphate hydrolysis. Petrović D; Szeler K; Kamerlin SCL Chem Commun (Camb); 2018 Mar; 54(25):3077-3089. PubMed ID: 29412205 [TBL] [Abstract][Full Text] [Related]
37. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102. Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886 [TBL] [Abstract][Full Text] [Related]