These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 26699928)
1. Quasi-Instantaneous Bacterial Inactivation on Cu-Ag Nanoparticulate 3D Catheters in the Dark and Under Light: Mechanism and Dynamics. Rtimi S; Sanjines R; Pulgarin C; Kiwi J ACS Appl Mater Interfaces; 2016 Jan; 8(1):47-55. PubMed ID: 26699928 [TBL] [Abstract][Full Text] [Related]
2. Microstructure of Cu-Ag Uniform Nanoparticulate Films on Polyurethane 3D Catheters: Surface Properties. Rtimi S; Sanjines R; Pulgarin C; Kiwi J ACS Appl Mater Interfaces; 2016 Jan; 8(1):56-63. PubMed ID: 26700113 [TBL] [Abstract][Full Text] [Related]
3. New evidence for Cu-decorated binary-oxides mediating bacterial inactivation/mineralization in aerobic media. Rtimi S; Pulgarin C; Bensimon M; Kiwi J Colloids Surf B Biointerfaces; 2016 Aug; 144():222-228. PubMed ID: 27088192 [TBL] [Abstract][Full Text] [Related]
4. Accelerated Escherichia coli inactivation in the dark on uniform copper flexible surfaces. Rtimi S; Sanjines R; Bensimon M; Pulgarin C; Kiwi J Biointerphases; 2014 Jun; 9(2):029012. PubMed ID: 24985216 [TBL] [Abstract][Full Text] [Related]
5. Beneficial effect of Cu on Ti-Nb-Ta-Zr sputtered uniform/adhesive gum films accelerating bacterial inactivation under indoor visible light. Alhussein A; Achache S; Deturche R; Sanchette F; Pulgarin C; Kiwi J; Rtimi S Colloids Surf B Biointerfaces; 2017 Apr; 152():152-158. PubMed ID: 28107706 [TBL] [Abstract][Full Text] [Related]
6. In Vitro and In Vivo Effectiveness of an Innovative Silver-Copper Nanoparticle Coating of Catheters To Prevent Methicillin-Resistant Staphylococcus aureus Infection. Ballo MK; Rtimi S; Pulgarin C; Hopf N; Berthet A; Kiwi J; Moreillon P; Entenza JM; Bizzini A Antimicrob Agents Chemother; 2016 Sep; 60(9):5349-56. PubMed ID: 27353266 [TBL] [Abstract][Full Text] [Related]
7. Inactivation of bacteria under visible light and in the dark by Cu films. Advantages of Cu-HIPIMS-sputtered films. Ehiasarian A; Pulgarin C; Kiwi J Environ Sci Pollut Res Int; 2012 Nov; 19(9):3791-7. PubMed ID: 23054741 [TBL] [Abstract][Full Text] [Related]
8. Innovative TiO2/Cu nanosurfaces inactivating bacteria in the minute range under low-intensity actinic light. Baghriche O; Rtimi S; Pulgarin C; Sanjines R; Kiwi J ACS Appl Mater Interfaces; 2012 Oct; 4(10):5234-40. PubMed ID: 23020183 [TBL] [Abstract][Full Text] [Related]
9. Highly efficient and stable Ag-AgBr/TiO2 composites for destruction of Escherichia coli under visible light irradiation. Wang X; Lim TT Water Res; 2013 Aug; 47(12):4148-58. PubMed ID: 23562562 [TBL] [Abstract][Full Text] [Related]
10. Preparation and Mechanism of Cu-Decorated TiO2-ZrO2 Films Showing Accelerated Bacterial Inactivation. Rtimi S; Pulgarin C; Sanjines R; Nadtochenko V; Lavanchy JC; Kiwi J ACS Appl Mater Interfaces; 2015 Jun; 7(23):12832-9. PubMed ID: 26023896 [TBL] [Abstract][Full Text] [Related]
11. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Hsu SH; Tseng HJ; Lin YC Biomaterials; 2010 Sep; 31(26):6796-808. PubMed ID: 20542329 [TBL] [Abstract][Full Text] [Related]
12. Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. Akhavan O J Colloid Interface Sci; 2009 Aug; 336(1):117-24. PubMed ID: 19394952 [TBL] [Abstract][Full Text] [Related]
13. Plasmon-induced inactivation of enteric pathogenic microorganisms with Ag-AgI/Al2O3 under visible-light irradiation. Hu X; Hu C; Peng T; Zhou X; Qu J Environ Sci Technol; 2010 Sep; 44(18):7058-62. PubMed ID: 20734989 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of copper oxide nanoparticles for antimicrobial applications. Ren G; Hu D; Cheng EW; Vargas-Reus MA; Reip P; Allaker RP Int J Antimicrob Agents; 2009 Jun; 33(6):587-90. PubMed ID: 19195845 [TBL] [Abstract][Full Text] [Related]
15. Role of dopant concentration, crystal phase and particle size on microbial inactivation of Cu-doped TiO2 nanoparticles. Sahu M; Wu B; Zhu L; Jacobson C; Wang WN; Jones K; Goyal Y; Tang YJ; Biswas P Nanotechnology; 2011 Oct; 22(41):415704. PubMed ID: 21918299 [TBL] [Abstract][Full Text] [Related]
16. Nanocrystal Cu2O-loaded TiO2 nanotube array films as high-performance visible-light bactericidal photocatalyst. Zhang S; Liu C; Liu X; Zhang H; Liu P; Zhang S; Peng F; Zhao H Appl Microbiol Biotechnol; 2012 Dec; 96(5):1201-7. PubMed ID: 22740049 [TBL] [Abstract][Full Text] [Related]
17. New Evidence for Ag-Sputtered Materials Inactivating Bacteria by Surface Contact without the Release of Ag Ions: End of a Long Controversy? Rtimi S; Konstantinidis S; Britun N; Nadtochenko V; Khmel I; Kiwi J ACS Appl Mater Interfaces; 2020 Jan; 12(4):4998-5007. PubMed ID: 31895531 [TBL] [Abstract][Full Text] [Related]
18. Prevalence of Monovalent Copper Over Divalent in Killing Escherichia coli and Staphylococcus aureus. Saphier M; Silberstein E; Shotland Y; Popov S; Saphier O Curr Microbiol; 2018 Apr; 75(4):426-430. PubMed ID: 29260302 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of phenolic precursor-based porous carbon beads in situ dispersed with copper-silver bimetal nanoparticles for antibacterial applications. Khare P; Sharma A; Verma N J Colloid Interface Sci; 2014 Mar; 418():216-24. PubMed ID: 24461838 [TBL] [Abstract][Full Text] [Related]
20. Effect of surface pretreatment of TiO2 films on interfacial processes leading to bacterial inactivation in the dark and under light irradiation. Rtimi S; Nesic J; Pulgarin C; Sanjines R; Bensimon M; Kiwi J Interface Focus; 2015 Feb; 5(1):20140046. PubMed ID: 25657831 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]