BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26700040)

  • 1. Selected Reaction Monitoring to Measure Proteins of Interest in Complex Samples: A Practical Guide.
    Feng Y; Picotti P
    Methods Mol Biol; 2016; 1394():43-56. PubMed ID: 26700040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducibility of combinatorial peptide ligand libraries for proteome capture evaluated by selected reaction monitoring.
    Di Girolamo F; Righetti PG; Soste M; Feng Y; Picotti P
    J Proteomics; 2013 Aug; 89():215-26. PubMed ID: 23747450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Phosphoproteome Analysis Using Selected/Multiple Reaction Monitoring (SRM/MRM).
    Adachi J; Narumi R; Tomonaga T
    Methods Mol Biol; 2016; 1394():87-100. PubMed ID: 26700043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATAQS: A computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry.
    Brusniak MY; Kwok ST; Christiansen M; Campbell D; Reiter L; Picotti P; Kusebauch U; Ramos H; Deutsch EW; Chen J; Moritz RL; Aebersold R
    BMC Bioinformatics; 2011 Mar; 12():78. PubMed ID: 21414234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational approaches to selected reaction monitoring assay design.
    Bessant C; Fan J
    Methods Mol Biol; 2013; 1007():219-35. PubMed ID: 23666728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine.
    Mermelekas G; Vlahou A; Zoidakis J
    Expert Rev Mol Diagn; 2015; 15(11):1441-54. PubMed ID: 26472065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition.
    Vidova V; Spacil Z
    Anal Chim Acta; 2017 Apr; 964():7-23. PubMed ID: 28351641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased Sensitivity of Mass Spectrometry by Alkaline Two-Dimensional Liquid Chromatography: Deep Cover of the Human Proteome in Gene-Centric Mode.
    Ilgisonis EV; Kopylov AT; Ponomarenko EA; Poverennaya EV; Tikhonova OV; Farafonova TE; Novikova S; Lisitsa AV; Zgoda VG; Archakov AI
    J Proteome Res; 2018 Dec; 17(12):4258-4266. PubMed ID: 30354151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selected reaction monitoring applied to proteomics.
    Gallien S; Duriez E; Domon B
    J Mass Spectrom; 2011 Mar; 46(3):298-312. PubMed ID: 21394846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards.
    Percy AJ; Yang J; Chambers AG; Borchers CH
    Methods Mol Biol; 2016; 1410():1-21. PubMed ID: 26867735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of SRM assays is transforming proteomics research.
    Manes NP; Nita-Lazar A
    Proteomics; 2017 Apr; 17(7):. PubMed ID: 27718317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Targeted MRM Approach for Tempo-Spatial Proteomics Analyses.
    Moradian A; Porras-Yakushi TR; Sweredoski MJ; Hess S
    Methods Mol Biol; 2016; 1394():75-85. PubMed ID: 26700042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted Proteomics.
    Chen Y; Liu L
    Methods Mol Biol; 2019; 1871():265-277. PubMed ID: 30276745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What is targeted proteomics? A concise revision of targeted acquisition and targeted data analysis in mass spectrometry.
    Borràs E; Sabidó E
    Proteomics; 2017 Sep; 17(17-18):. PubMed ID: 28719092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectrometric discovery and selective reaction monitoring (SRM) of putative protein biomarker candidates in first trimester Trisomy 21 maternal serum.
    Lopez MF; Kuppusamy R; Sarracino DA; Prakash A; Athanas M; Krastins B; Rezai T; Sutton JN; Peterman S; Nicolaides K
    J Proteome Res; 2011 Jan; 10(1):133-42. PubMed ID: 20499897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying selected reaction monitoring to targeted proteomics.
    Calvo E; Camafeita E; Fernández-Gutiérrez B; López JA
    Expert Rev Proteomics; 2011 Apr; 8(2):165-73. PubMed ID: 21501010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-depth proteomics of ovarian cancer ascites: combining shotgun proteomics and selected reaction monitoring mass spectrometry.
    Elschenbroich S; Ignatchenko V; Clarke B; Kalloger SE; Boutros PC; Gramolini AO; Shaw P; Jurisica I; Kislinger T
    J Proteome Res; 2011 May; 10(5):2286-99. PubMed ID: 21491939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional peptide separation improving sensitivity of selected reaction monitoring-based quantitative proteomics in mouse liver tissue: comparing off-gel electrophoresis and strong cation exchange chromatography.
    Schäfer A; von Toerne C; Becker S; Sarioglu H; Neschen S; Kahle M; Hauck SM; Ueffing M
    Anal Chem; 2012 Oct; 84(20):8853-62. PubMed ID: 22994301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selected reaction monitoring for quantitative proteomics: a tutorial.
    Lange V; Picotti P; Domon B; Aebersold R
    Mol Syst Biol; 2008; 4():222. PubMed ID: 18854821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Reaction Monitoring for Quantitation of Cellular Proteins.
    Faça VM
    Methods Mol Biol; 2017; 1546():213-221. PubMed ID: 27896771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.