BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 26700041)

  • 1. Monitoring PPARG-Induced Changes in Glycolysis by Selected Reaction Monitoring Mass Spectrometry.
    Hentschel A; Ahrends R
    Methods Mol Biol; 2016; 1394():57-74. PubMed ID: 26700041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased Sensitivity of Mass Spectrometry by Alkaline Two-Dimensional Liquid Chromatography: Deep Cover of the Human Proteome in Gene-Centric Mode.
    Ilgisonis EV; Kopylov AT; Ponomarenko EA; Poverennaya EV; Tikhonova OV; Farafonova TE; Novikova S; Lisitsa AV; Zgoda VG; Archakov AI
    J Proteome Res; 2018 Dec; 17(12):4258-4266. PubMed ID: 30354151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of proteome dynamics in Corynebacterium glutamicum by (15)N-labeling and selected reaction monitoring.
    Voges R; Noack S
    J Proteomics; 2012 May; 75(9):2660-9. PubMed ID: 22476105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotope coded protein label quantification of serum proteins--comparison with the label-free LC-MS and validation using the MRM approach.
    Turtoi A; Mazzucchelli GD; De Pauw E
    Talanta; 2010 Feb; 80(4):1487-95. PubMed ID: 20082806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry.
    Rauniyar N
    Int J Mol Sci; 2015 Dec; 16(12):28566-81. PubMed ID: 26633379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted proteomic analysis of glycolysis in cancer cells.
    Murphy JP; Pinto DM
    J Proteome Res; 2011 Feb; 10(2):604-13. PubMed ID: 21058741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay.
    Drabovich AP; Pavlou MP; Dimitromanolakis A; Diamandis EP
    Mol Cell Proteomics; 2012 Aug; 11(8):422-34. PubMed ID: 22535206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of selected reaction monitoring and parallel reaction monitoring for investigation of HL-60 cell line differentiation.
    Novikova SE; Tikhonova OV; Kurbatov LK; Farafonova TE; Vakhrushev IV; Zgoda VG
    Eur J Mass Spectrom (Chichester); 2017 Aug; 23(4):202-208. PubMed ID: 29028392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards.
    Percy AJ; Yang J; Chambers AG; Borchers CH
    Methods Mol Biol; 2016; 1410():1-21. PubMed ID: 26867735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted comparative proteomics by liquid chromatography/matrix-assisted laser desorption/ionization triple-quadrupole mass spectrometry.
    Melanson JE; Chisholm KA; Pinto DM
    Rapid Commun Mass Spectrom; 2006; 20(5):904-10. PubMed ID: 16470697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A large-scale targeted proteomics assay resource based on an in vitro human proteome.
    Matsumoto M; Matsuzaki F; Oshikawa K; Goshima N; Mori M; Kawamura Y; Ogawa K; Fukuda E; Nakatsumi H; Natsume T; Fukui K; Horimoto K; Nagashima T; Funayama R; Nakayama K; Nakayama KI
    Nat Methods; 2017 Mar; 14(3):251-258. PubMed ID: 28267743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic evaluation of label-free and super-SILAC quantification for proteome expression analysis.
    Tebbe A; Klammer M; Sighart S; Schaab C; Daub H
    Rapid Commun Mass Spectrom; 2015 May; 29(9):795-801. PubMed ID: 26377007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional peptide separation improving sensitivity of selected reaction monitoring-based quantitative proteomics in mouse liver tissue: comparing off-gel electrophoresis and strong cation exchange chromatography.
    Schäfer A; von Toerne C; Becker S; Sarioglu H; Neschen S; Kahle M; Hauck SM; Ueffing M
    Anal Chem; 2012 Oct; 84(20):8853-62. PubMed ID: 22994301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Phosphoproteome Analysis Using Selected/Multiple Reaction Monitoring (SRM/MRM).
    Adachi J; Narumi R; Tomonaga T
    Methods Mol Biol; 2016; 1394():87-100. PubMed ID: 26700043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomarker verification using selected reaction monitoring and shotgun proteomics.
    Castro-Gamero AM; Izumi C; Rosa JC
    Methods Mol Biol; 2014; 1156():295-306. PubMed ID: 24791997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selected Reaction Monitoring to Measure Proteins of Interest in Complex Samples: A Practical Guide.
    Feng Y; Picotti P
    Methods Mol Biol; 2016; 1394():43-56. PubMed ID: 26700040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed Quantitative Proteomics for High-Throughput Comprehensive Proteome Comparisons of Human Cell Lines.
    Edwards A; Haas W
    Methods Mol Biol; 2016; 1394():1-13. PubMed ID: 26700037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine.
    Mermelekas G; Vlahou A; Zoidakis J
    Expert Rev Mol Diagn; 2015; 15(11):1441-54. PubMed ID: 26472065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of targeted peptide quantification assays for reductive dehalogenases by selective reaction monitoring (SRM) and precursor reaction monitoring (PRM).
    Schiffmann C; Hansen R; Baumann S; Kublik A; Nielsen PH; Adrian L; von Bergen M; Jehmlich N; Seifert J
    Anal Bioanal Chem; 2014 Jan; 406(1):283-91. PubMed ID: 24220761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing Suitability of Cell Cultures for SILAC-Experiments Using SWATH-Mass Spectrometry.
    Reinders Y; Völler D; Bosserhoff AK; Oefner PJ; Reinders J
    Methods Mol Biol; 2016; 1394():101-108. PubMed ID: 26700044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.