BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26700043)

  • 1. Targeted Phosphoproteome Analysis Using Selected/Multiple Reaction Monitoring (SRM/MRM).
    Adachi J; Narumi R; Tomonaga T
    Methods Mol Biol; 2016; 1394():87-100. PubMed ID: 26700043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Analysis of Tissue Samples by Combining iTRAQ Isobaric Labeling with Selected/Multiple Reaction Monitoring (SRM/MRM).
    Narumi R; Tomonaga T
    Methods Mol Biol; 2016; 1355():85-101. PubMed ID: 26584920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A strategy for large-scale phosphoproteomics and SRM-based validation of human breast cancer tissue samples.
    Narumi R; Murakami T; Kuga T; Adachi J; Shiromizu T; Muraoka S; Kume H; Kodera Y; Matsumoto M; Nakayama K; Miyamoto Y; Ishitobi M; Inaji H; Kato K; Tomonaga T
    J Proteome Res; 2012 Nov; 11(11):5311-22. PubMed ID: 22985185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Targeted MRM Approach for Tempo-Spatial Proteomics Analyses.
    Moradian A; Porras-Yakushi TR; Sweredoski MJ; Hess S
    Methods Mol Biol; 2016; 1394():75-85. PubMed ID: 26700042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two Birds with One Stone: Parallel Quantification of Proteome and Phosphoproteome Using iTRAQ.
    Solari FA; Kollipara L; Sickmann A; Zahedi RP
    Methods Mol Biol; 2016; 1394():25-41. PubMed ID: 26700039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine.
    Mermelekas G; Vlahou A; Zoidakis J
    Expert Rev Mol Diagn; 2015; 15(11):1441-54. PubMed ID: 26472065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selected Reaction Monitoring to Measure Proteins of Interest in Complex Samples: A Practical Guide.
    Feng Y; Picotti P
    Methods Mol Biol; 2016; 1394():43-56. PubMed ID: 26700040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Validation of Multiple Reaction Monitoring (MRM) Assays for Clinical Applications.
    Kontostathi G; Makridakis M; Bitsika V; Tsolakos N; Vlahou A; Zoidakis J
    Methods Mol Biol; 2019; 1959():205-223. PubMed ID: 30852825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition.
    Vidova V; Spacil Z
    Anal Chim Acta; 2017 Apr; 964():7-23. PubMed ID: 28351641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted Analysis of Phosphotyrosine Signaling by Multiple Reaction Monitoring Mass Spectrometry.
    Payne LS; Huang PH
    Methods Mol Biol; 2017; 1636():263-281. PubMed ID: 28730485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for Standardizing High-to-Moderate Abundance Protein Biomarker Assessments Through an MRM-with-Standard-Peptides Quantitative Approach.
    Percy AJ; Yang J; Chambers AG; Mohammed Y; Miliotis T; Borchers CH
    Adv Exp Med Biol; 2016; 919():515-530. PubMed ID: 27975233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research.
    Loroch S; Schommartz T; Brune W; Zahedi RP; Sickmann A
    Biochim Biophys Acta; 2015 May; 1854(5):460-8. PubMed ID: 25619855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y
    J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical strategies in mass spectrometry-based phosphoproteomics.
    Rosenqvist H; Ye J; Jensen ON
    Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of multiple reaction monitoring targeted proteomics assays in human plasma.
    Kontostathi G; Makridakis M; Zoidakis J; Vlahou A
    Expert Rev Mol Diagn; 2019 Jun; 19(6):499-515. PubMed ID: 31057016
    [No Abstract]   [Full Text] [Related]  

  • 17. Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards.
    Percy AJ; Yang J; Chambers AG; Borchers CH
    Methods Mol Biol; 2016; 1410():1-21. PubMed ID: 26867735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absolute Quantification of Middle- to High-Abundant Plasma Proteins via Targeted Proteomics.
    Dittrich J; Ceglarek U
    Methods Mol Biol; 2017; 1619():417-430. PubMed ID: 28674901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-translational quantitation by SRM/MRM: applications in cardiology.
    Gianazza E; Banfi C
    Expert Rev Proteomics; 2018 Jun; 15(6):477-502. PubMed ID: 29865883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of missing proteins in the human liver proteome by improved MRM-approach-based targeted proteomics.
    Chen C; Liu X; Zheng W; Zhang L; Yao J; Yang P
    J Proteome Res; 2014 Apr; 13(4):1969-78. PubMed ID: 24597967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.