These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 26700114)
1. C70 as a Photocatalyst for Oxidation of Secondary Benzylamines to Imines. Kumar R; Gleissner EH; Tiu EG; Yamakoshi Y Org Lett; 2016 Jan; 18(2):184-7. PubMed ID: 26700114 [TBL] [Abstract][Full Text] [Related]
2. Porphycene-mediated photooxidation of benzylamines by visible light. Berlicka A; König B Photochem Photobiol Sci; 2010 Oct; 9(10):1359-66. PubMed ID: 20820677 [TBL] [Abstract][Full Text] [Related]
3. Convenient and clean synthesis of imines from primary benzylamines. Chu G; Li C Org Biomol Chem; 2010 Oct; 8(20):4716-9. PubMed ID: 20714661 [TBL] [Abstract][Full Text] [Related]
4. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2. Yamakoshi Y; Umezawa N; Ryu A; Arakane K; Miyata N; Goda Y; Masumizu T; Nagano T J Am Chem Soc; 2003 Oct; 125(42):12803-9. PubMed ID: 14558828 [TBL] [Abstract][Full Text] [Related]
5. Continuous-flow oxidative cyanation of primary and secondary amines using singlet oxygen. Ushakov DB; Gilmore K; Kopetzki D; McQuade DT; Seeberger PH Angew Chem Int Ed Engl; 2014 Jan; 53(2):557-61. PubMed ID: 24288288 [TBL] [Abstract][Full Text] [Related]
6. Photosensitized enzyme deactivation and protein oxidation by axial-substituted phosphorus(V) tetraphenylporphyrins. Ouyang D; Hirakawa K J Photochem Photobiol B; 2017 Oct; 175():125-131. PubMed ID: 28866470 [TBL] [Abstract][Full Text] [Related]
7. Selective oxidative degradation of organic pollutants by singlet oxygen-mediated photosensitization: tin porphyrin versus C60 aminofullerene systems. Kim H; Kim W; Mackeyev Y; Lee GS; Kim HJ; Tachikawa T; Hong S; Lee S; Kim J; Wilson LJ; Majima T; Alvarez PJ; Choi W; Lee J Environ Sci Technol; 2012 Sep; 46(17):9606-13. PubMed ID: 22852818 [TBL] [Abstract][Full Text] [Related]
8. Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism. Mroz P; Pawlak A; Satti M; Lee H; Wharton T; Gali H; Sarna T; Hamblin MR Free Radic Biol Med; 2007 Sep; 43(5):711-9. PubMed ID: 17664135 [TBL] [Abstract][Full Text] [Related]
9. Reactions of fullerenes with reactive methylene organophosphorus reagents: efficient synthesis of organophosphorus group substituted C60 and C70 derivatives. Yin JJ; Jin LM; Liu RL; Li QN; Fan CH; Li Y; Li WX; Chen QY J Org Chem; 2006 Mar; 71(6):2267-71. PubMed ID: 16526772 [TBL] [Abstract][Full Text] [Related]
10. Effects of light energy and reducing agents on C60-mediated photosensitizing reactions. Quinones M; Zhang Y; Riascos P; Hwang HM; Aker WG; He X; Gao R Photochem Photobiol; 2014; 90(2):374-9. PubMed ID: 24188530 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient oxidation of amines to imines by singlet oxygen and its application in Ugi-type reactions. Jiang G; Chen J; Huang JS; Che CM Org Lett; 2009 Oct; 11(20):4568-71. PubMed ID: 19810764 [TBL] [Abstract][Full Text] [Related]
12. Photo-oxidation of ergosterol: indirect detection of antioxidants photosensitizers or quenchers of singlet oxygen. Lagunes I; Trigos Á J Photochem Photobiol B; 2015 Apr; 145():30-4. PubMed ID: 25756399 [TBL] [Abstract][Full Text] [Related]
13. Inclusion properties of 3-fluoromesotetraphenylporphyrin with C60 and C70. Bhattacharya S; Nayak SK; Chattopadhyay S; Ghosh K; Banerjee M Spectrochim Acta A Mol Biomol Spectrosc; 2007 Aug; 67(5):1257-62. PubMed ID: 17161647 [TBL] [Abstract][Full Text] [Related]
14. [Fullerenes in biology]. Krokosz A Postepy Biochem; 2007; 53(1):91-6. PubMed ID: 17718393 [TBL] [Abstract][Full Text] [Related]
15. Chemical modification of a tetrapyrrole-type photosensitizer: tuning application and photochemical action beyond the singlet oxygen channel. Riyad YM; Naumov S; Schastak S; Griebel J; Kahnt A; Häupl T; Neuhaus J; Abel B; Hermann R J Phys Chem B; 2014 Oct; 118(40):11646-58. PubMed ID: 25207950 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of singlet-oxygen and superoxide-ion generation by porphyrins and bacteriochlorins and their implications in photodynamic therapy. Silva EF; Serpa C; Dabrowski JM; Monteiro CJ; Formosinho SJ; Stochel G; Urbanska K; Simões S; Pereira MM; Arnaut LG Chemistry; 2010 Aug; 16(30):9273-86. PubMed ID: 20572171 [TBL] [Abstract][Full Text] [Related]
17. Bodipy derivatives as organic triplet photosensitizers for aerobic photoorganocatalytic oxidative coupling of amines and photooxidation of dihydroxylnaphthalenes. Huang L; Zhao J; Guo S; Zhang C; Ma J J Org Chem; 2013 Jun; 78(11):5627-37. PubMed ID: 23668289 [TBL] [Abstract][Full Text] [Related]
19. Are silicone-supported [C60]-fullerenes an alternative to Ru(II) polypyridyls for photodynamic solar water disinfection? Manjón F; Santana-Magaña M; García-Fresnadillo D; Orellana G Photochem Photobiol Sci; 2014 Feb; 13(2):397-406. PubMed ID: 24395285 [TBL] [Abstract][Full Text] [Related]
20. Physicochemical insights in supramolecular interaction of fullerenes C60 and C70 with a monoporphyrin in presence of silver nanoparticles. Mitra R; Chattopadhyay S; Bhattacharya S Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():284-93. PubMed ID: 22277621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]