BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26700222)

  • 1. The AAA ATPase Vps4 Plays Important Roles in Candida albicans Hyphal Formation and is Inhibited by DBeQ.
    Zhang Y; Li W; Chu M; Chen H; Yu H; Fang C; Sun N; Wang Q; Luo T; Luo K; She X; Zhang M; Yang D
    Mycopathologia; 2016 Jun; 181(5-6):329-39. PubMed ID: 26700222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ESCRT System Plays an Important Role in the Germination in Candida albicans by Regulating the Expression of Hyphal-Specific Genes and the Localization of Polarity-Related Proteins.
    Yang T; Li W; Li Y; Liu X; Yang D
    Mycopathologia; 2020 Jun; 185(3):439-454. PubMed ID: 32279163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A functional analysis of the Candida albicans homolog of Saccharomyces cerevisiae VPS4.
    Lee SA; Jones J; Khalique Z; Kot J; Alba M; Bernardo S; Seghal A; Wong B
    FEMS Yeast Res; 2007 Sep; 7(6):973-85. PubMed ID: 17506830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking Sfl1 Regulation of Hyphal Development to Stress Response Kinases in Candida albicans.
    Unoje O; Yang M; Lu Y; Su C; Liu H
    mSphere; 2020 Jan; 5(1):. PubMed ID: 31941808
    [No Abstract]   [Full Text] [Related]  

  • 5. Mutational analysis of Candida albicans SNF7 reveals genetically separable Rim101 and ESCRT functions and demonstrates divergence in bro1-domain protein interactions.
    Wolf JM; Davis DA
    Genetics; 2010 Mar; 184(3):673-94. PubMed ID: 20026677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalase gene disruptant of the human pathogenic yeast Candida albicans is defective in hyphal growth, and a catalase-specific inhibitor can suppress hyphal growth of wild-type cells.
    Nakagawa Y
    Microbiol Immunol; 2008 Jan; 52(1):16-24. PubMed ID: 18352908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Candida albicans VPS4 contributes differentially to epithelial and mucosal pathogenesis.
    Rane HS; Hardison S; Botelho C; Bernardo SM; Wormley F; Lee SA
    Virulence; 2014; 5(8):810-8. PubMed ID: 25483774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The putative vacuolar ATPase subunit Vma7p of Candida albicans is involved in vacuole acidification, hyphal development and virulence.
    Poltermann S; Nguyen M; Günther J; Wendland J; Härtl A; Künkel W; Zipfel PF; Eck R
    Microbiology (Reading); 2005 May; 151(Pt 5):1645-1655. PubMed ID: 15870472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH.
    Vylkova S; Carman AJ; Danhof HA; Collette JR; Zhou H; Lorenz MC
    mBio; 2011; 2(3):e00055-11. PubMed ID: 21586647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The actin-related protein Sac1 is required for morphogenesis and cell wall integrity in Candida albicans.
    Zhang B; Yu Q; Jia C; Wang Y; Xiao C; Dong Y; Xu N; Wang L; Li M
    Fungal Genet Biol; 2015 Aug; 81():261-70. PubMed ID: 25575432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The formin family protein CaBni1p has a role in cell polarity control during both yeast and hyphal growth in Candida albicans.
    Li CR; Wang YM; De Zheng X; Liang HY; Tang JC; Wang Y
    J Cell Sci; 2005 Jun; 118(Pt 12):2637-48. PubMed ID: 15914538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Candida albicans transformation in response to changes of pH.
    Konno N; Ishii M; Nagai A; Watanabe T; Ogasawara A; Mikami T; Matsumoto T
    Biol Pharm Bull; 2006 May; 29(5):923-6. PubMed ID: 16651720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boric acid destabilizes the hyphal cytoskeleton and inhibits invasive growth of Candida albicans.
    Pointer BR; Boyer MP; Schmidt M
    Yeast; 2015 Apr; 32(4):389-98. PubMed ID: 25612315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model.
    Song W; Wang H; Chen J
    FEMS Yeast Res; 2011 Mar; 11(2):209-22. PubMed ID: 21205158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Candida albicans ESCRT pathway makes Rim101-dependent and -independent contributions to pathogenesis.
    Wolf JM; Johnson DJ; Chmielewski D; Davis DA
    Eukaryot Cell; 2010 Aug; 9(8):1203-15. PubMed ID: 20581294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERG11 couples oxidative stress adaptation, hyphal elongation and virulence in Candida albicans.
    Wu Y; Wu M; Wang Y; Chen Y; Gao J; Ying C
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 29931064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of TFP1 in vacuolar acidification, oxidative stress and filamentous development in Candida albicans.
    Jia C; Yu Q; Xu N; Zhang B; Dong Y; Ding X; Chen Y; Zhang B; Xing L; Li M
    Fungal Genet Biol; 2014 Oct; 71():58-67. PubMed ID: 25220074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of Candida albicans Sfl1 in hyphal development.
    Li Y; Su C; Mao X; Cao F; Chen J
    Eukaryot Cell; 2007 Nov; 6(11):2112-21. PubMed ID: 17715361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis.
    Zheng X; Wang Y; Wang Y
    EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyphal development in Candida albicans from different cell states.
    Su C; Yu J; Lu Y
    Curr Genet; 2018 Dec; 64(6):1239-1243. PubMed ID: 29796903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.