These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26700249)

  • 41. Development of a method to estimate mouth-level benzo[a]pyrene intake by filter analysis.
    Ding YS; Chou T; Abdul-Salaam S; Hearn B; Watson CH
    Cancer Epidemiol Biomarkers Prev; 2012 Jan; 21(1):39-44. PubMed ID: 22028404
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A high-performance liquid chromatographic determination of major phenolic compounds in tobacco smoke.
    Risner CH; Cash SL
    J Chromatogr Sci; 1990 May; 28(5):239-44. PubMed ID: 2283385
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Volatile aldehydes in the mainstream smoke of the narghile waterpipe.
    Al Rashidi M; Shihadeh A; Saliba NA
    Food Chem Toxicol; 2008 Nov; 46(11):3546-9. PubMed ID: 18834915
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of mainstream tobacco smoke particulate phase using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.
    Brokl M; Bishop L; Wright CG; Liu C; McAdam K; Focant JF
    J Sep Sci; 2013 Mar; 36(6):1037-44. PubMed ID: 23427113
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The generation of formaldehyde in cigarettes--Overview and recent experiments.
    Baker RR
    Food Chem Toxicol; 2006 Nov; 44(11):1799-822. PubMed ID: 16859820
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fluorescent approach to quantitation of reactive oxygen species in mainstream cigarette smoke.
    Ou B; Huang D
    Anal Chem; 2006 May; 78(9):3097-103. PubMed ID: 16642999
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Strategy for Efficiently Collecting Aerosol Condensate Using Silica Fibers: Application to Carbonyl Emissions from E-Cigarettes.
    Stephens WE; de Falco B; Fiore A
    Chem Res Toxicol; 2019 Oct; 32(10):2053-2062. PubMed ID: 31515993
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid communication: effects of tobacco processing on the quantity of benzo[a]pyrene in mainstream smoke.
    Martin LA; Byrd SK; Milofsky RE
    J Toxicol Environ Health A; 2003 Jul; 66(14):1283-6. PubMed ID: 12851112
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fractionation of cadmium in tobacco and cigarette smoke condensate using XANES and sequential leaching with ICP-MS/MS.
    Cuello-Nuñez S; Benning J; Liu C; Branton P; Hu J; McAdam KG; Coburn S; Braybrook J; Goenaga-Infante H
    Anal Bioanal Chem; 2018 Oct; 410(26):6795-6806. PubMed ID: 30094791
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carbon-centered radicals in cigarette smoke: acyl and alkylaminocarbonyl radicals.
    Bartalis J; Zhao YL; Flora JW; Paine JB; Wooten JB
    Anal Chem; 2009 Jan; 81(2):631-41. PubMed ID: 19093757
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of Topography-Related Puff Parameters on Carbonyl Delivery in Mainstream Cigarette Smoke.
    Reilly SM; Goel R; Bitzer Z; Elias RJ; Foulds J; Muscat J; Richie JP
    Chem Res Toxicol; 2017 Jul; 30(7):1463-1469. PubMed ID: 28648066
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An improved high performance liquid chromatography-fluorescence detection method for the analysis of major phenolic compounds in cigarette smoke and smokeless tobacco products.
    Wu J; Rickert WS; Masters A
    J Chromatogr A; 2012 Nov; 1264():40-7. PubMed ID: 23062878
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Method for the Determination of Ammonia in Mainstream Cigarette Smoke Using Ion Chromatography.
    Watson CV; Feng J; Valentin-Blasini L; Stanelle R; Watson CH
    PLoS One; 2016; 11(7):e0159126. PubMed ID: 27415766
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Determination of Polycyclic Aromatic Hydrocarbons and Mutagenicity of Mainstream Smoke and Heavy Metals in Tobacco Filler of Cigarettes of a Brand in Japan and Cigarettes of the Same Brand Imported Privately from Other Asian Countries].
    Ohkubo T; Inaba Y; Hara Y; Uchiyama S; Kunugita N
    Nihon Eiseigaku Zasshi; 2016; 71(1):84-90. PubMed ID: 26832621
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determination of carcinogenic tobacco-specific nitrosamines in mainstream smoke from U.S.-brand and non-U.S.-brand cigarettes from 14 countries.
    Wu W; Zhang L; Jain RB; Ashley DL; Watson CH
    Nicotine Tob Res; 2005 Jun; 7(3):443-51. PubMed ID: 16085512
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of select analytes in aerosol from e-cigarettes with smoke from conventional cigarettes and with ambient air.
    Tayyarah R; Long GA
    Regul Toxicol Pharmacol; 2014 Dec; 70(3):704-10. PubMed ID: 25444997
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of aflatoxin B1 in sidestream cigarette smoke by immunoaffinity column extraction coupled with liquid chromatography/mass spectrometry.
    Edinboro LE; Karnes HT
    J Chromatogr A; 2005 Aug; 1083(1-2):127-32. PubMed ID: 16078698
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Determination of major carbonyls in mainstream smoke by rapid column high performance liquid chromatography].
    Huang Y; Wang Y; Miao M; Zhao Q; Yang G
    Se Pu; 2007 Mar; 25(2):230-3. PubMed ID: 17580693
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Variation in tobacco and mainstream smoke toxicant yields from selected commercial cigarette products.
    Eldridge A; Betson TR; Gama MV; McAdam K
    Regul Toxicol Pharmacol; 2015 Apr; 71(3):409-27. PubMed ID: 25620723
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke.
    Moldoveanu SC; Kiser M
    J Chromatogr A; 2007 Feb; 1141(1):90-7. PubMed ID: 17182049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.