BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26700626)

  • 1. Graphene-Based Interfaces Do Not Alter Target Nerve Cells.
    Fabbro A; Scaini D; León V; Vázquez E; Cellot G; Privitera G; Lombardi L; Torrisi F; Tomarchio F; Bonaccorso F; Bosi S; Ferrari AC; Ballerini L; Prato M
    ACS Nano; 2016 Jan; 10(1):615-23. PubMed ID: 26700626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sculpting neurotransmission during synaptic development by 2D nanostructured interfaces.
    Pampaloni NP; Scaini D; Perissinotto F; Bosi S; Prato M; Ballerini L
    Nanomedicine; 2018 Oct; 14(7):2521-2532. PubMed ID: 28552645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of crystalline quality on neuronal affinity of pristine graphene.
    Veliev F; Briançon-Marjollet A; Bouchiat V; Delacour C
    Biomaterials; 2016 Apr; 86():33-41. PubMed ID: 26878439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental refinement of synaptic transmission on micropatterned single layer graphene.
    Keshavan S; Naskar S; Diaspro A; Cancedda L; Dante S
    Acta Biomater; 2018 Jan; 65():363-375. PubMed ID: 29122711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications.
    Jakus AE; Secor EB; Rutz AL; Jordan SW; Hersam MC; Shah RN
    ACS Nano; 2015; 9(4):4636-48. PubMed ID: 25858670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural development of primary cultured hippocampal neurons on a graphene substrate.
    He Z; Zhang S; Song Q; Li W; Liu D; Li H; Tang M; Chai R
    Colloids Surf B Biointerfaces; 2016 Oct; 146():442-51. PubMed ID: 27395037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits.
    Mazzatenta A; Giugliano M; Campidelli S; Gambazzi L; Businaro L; Markram H; Prato M; Ballerini L
    J Neurosci; 2007 Jun; 27(26):6931-6. PubMed ID: 17596441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transparent conducting films based on reduced graphene oxide multilayers for biocompatible neuronal interfaces.
    Kim SM; Joo P; Ahn G; Cho IH; Kim DH; Song WK; Kim BS; Yoon MH
    J Biomed Nanotechnol; 2013 Mar; 9(3):403-8. PubMed ID: 23620995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin graphene oxide nanoflakes modulate glutamatergic synapses in the amygdala cultured circuits: Exploiting synaptic approaches to anxiety disorders.
    Secomandi N; Franceschi Biagioni A; Kostarelos K; Cellot G; Ballerini L
    Nanomedicine; 2020 Jun; 26():102174. PubMed ID: 32147408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacing neurons with carbon nanotubes: (re)engineering neuronal signaling.
    Fabbro A; Cellot G; Prato M; Ballerini L
    Prog Brain Res; 2011; 194():241-52. PubMed ID: 21867808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Oxide Flakes Tune Excitatory Neurotransmission in Vivo by Targeting Hippocampal Synapses.
    Rauti R; Medelin M; Newman L; Vranic S; Reina G; Bianco A; Prato M; Kostarelos K; Ballerini L
    Nano Lett; 2019 May; 19(5):2858-2870. PubMed ID: 30983361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs.
    Fabbro A; Villari A; Laishram J; Scaini D; Toma FM; Turco A; Prato M; Ballerini L
    ACS Nano; 2012 Mar; 6(3):2041-55. PubMed ID: 22339712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube fibers are compatible with Mammalian cells and neurons.
    Dubin RA; Callegari G; Kohn J; Neimark A
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):11-4. PubMed ID: 18334451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells.
    Kim J; Choi KS; Kim Y; Lim KT; Seonwoo H; Park Y; Kim DH; Choung PH; Cho CS; Kim SY; Choung YH; Chung JH
    J Biomed Mater Res A; 2013 Dec; 101(12):3520-30. PubMed ID: 23613168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacing live cells with nanocarbon substrates.
    Agarwal S; Zhou X; Ye F; He Q; Chen GC; Soo J; Boey F; Zhang H; Chen P
    Langmuir; 2010 Feb; 26(4):2244-7. PubMed ID: 20099791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic plasticity in micropatterned neuronal networks.
    Vogt AK; Wrobel G; Meyer W; Knoll W; Offenhäusser A
    Biomaterials; 2005 May; 26(15):2549-57. PubMed ID: 15585257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks.
    Thalhammer A; Edgington RJ; Cingolani LA; Schoepfer R; Jackman RB
    Biomaterials; 2010 Mar; 31(8):2097-104. PubMed ID: 20035997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility of pristine graphene for neuronal interface.
    Sahni D; Jea A; Mata JA; Marcano DC; Sivaganesan A; Berlin JM; Tatsui CE; Sun Z; Luerssen TG; Meng S; Kent TA; Tour JM
    J Neurosurg Pediatr; 2013 May; 11(5):575-83. PubMed ID: 23473006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of postnatal neural stem cells into glia and functional neurons on laminin-coated polymeric substrates.
    Martínez-Ramos C; Lainez S; Sancho F; García Esparza MA; Planells-Cases R; García Verdugo JM; Gómez Ribelles JL; Salmerón Sánchez M; Monleón Pradas M; Barcia JA; Soria JM
    Tissue Eng Part A; 2008 Aug; 14(8):1365-75. PubMed ID: 18491954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks.
    Fabbro A; Bosi S; Ballerini L; Prato M
    ACS Chem Neurosci; 2012 Aug; 3(8):611-8. PubMed ID: 22896805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.