These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26700642)

  • 1. A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions.
    Sameith K; Amini S; Groot Koerkamp MJ; van Leenen D; Brok M; Brabers N; Lijnzaad P; van Hooff SR; Benschop JJ; Lenstra TL; Apweiler E; van Wageningen S; Snel B; Holstege FC; Kemmeren P
    BMC Biol; 2015 Dec; 13():112. PubMed ID: 26700642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ability of transcription factors to differentially regulate gene expression is a crucial component of the mechanism underlying inversion, a frequently observed genetic interaction pattern.
    Amini S; Jacobsen A; Ivanova O; Lijnzaad P; Heringa J; Holstege FCP; Feenstra KA; Kemmeren P
    PLoS Comput Biol; 2019 May; 15(5):e1007061. PubMed ID: 31083661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring genetic interactions and networks with yeast.
    Boone C; Bussey H; Andrews BJ
    Nat Rev Genet; 2007 Jun; 8(6):437-49. PubMed ID: 17510664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein Moonlighting Revealed by Noncatalytic Phenotypes of Yeast Enzymes.
    Espinosa-Cantú A; Ascencio D; Herrera-Basurto S; Xu J; Roguev A; Krogan NJ; DeLuna A
    Genetics; 2018 Jan; 208(1):419-431. PubMed ID: 29127264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of phenotype and gene expression for combinations of mutations.
    Carter GW; Prinz S; Neou C; Shelby JP; Marzolf B; Thorsson V; Galitski T
    Mol Syst Biol; 2007; 3():96. PubMed ID: 17389876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae.
    Petti AA; Church GM
    Genome Res; 2005 Sep; 15(9):1298-306. PubMed ID: 16109970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying genetic modulators of the connectivity between transcription factors and their transcriptional targets.
    Fazlollahi M; Muroff I; Lee E; Causton HC; Bussemaker HJ
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1835-43. PubMed ID: 26966232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic identification and correction of annotation errors in the genetic interaction map of Saccharomyces cerevisiae.
    Atias N; Kupiec M; Sharan R
    Nucleic Acids Res; 2016 Mar; 44(5):e50. PubMed ID: 26602688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic reconstruction of a functional transcriptional regulatory network.
    Hu Z; Killion PJ; Iyer VR
    Nat Genet; 2007 May; 39(5):683-7. PubMed ID: 17417638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does the study of genetic interactions help predict the function of mitochondrial proteins in Saccharomyces cerevisiae?
    Ostojić J; Glatigny A; Herbert CJ; Dujardin G; Bonnefoy N
    Biochimie; 2014 May; 100():27-37. PubMed ID: 24262604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets.
    van de Peppel J; Kettelarij N; van Bakel H; Kockelkorn TT; van Leenen D; Holstege FC
    Mol Cell; 2005 Aug; 19(4):511-22. PubMed ID: 16109375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Causal inference of regulator-target pairs by gene mapping of expression phenotypes.
    Kulp DC; Jagalur M
    BMC Genomics; 2006 May; 7():125. PubMed ID: 16719927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational discovery of gene modules and regulatory networks.
    Bar-Joseph Z; Gerber GK; Lee TI; Rinaldi NJ; Yoo JY; Robert F; Gordon DB; Fraenkel E; Jaakkola TS; Young RA; Gifford DK
    Nat Biotechnol; 2003 Nov; 21(11):1337-42. PubMed ID: 14555958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing genetic networks in yeast.
    Zhang Z; Gerstein M
    Nat Biotechnol; 2003 Nov; 21(11):1295-7. PubMed ID: 14595359
    [No Abstract]   [Full Text] [Related]  

  • 18. Design and isolation of temperature-sensitive mutants of Gal4 in yeast and Drosophila.
    Mondal K; Dastidar AG; Singh G; Madhusudhanan S; Gande SL; VijayRaghavan K; Varadarajan R
    J Mol Biol; 2007 Jul; 370(5):939-50. PubMed ID: 17553522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic regulation and the variability of gene expression.
    Choi JK; Kim YJ
    Nat Genet; 2008 Feb; 40(2):141-7. PubMed ID: 18227874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epistatic relationships reveal the functional organization of yeast transcription factors.
    Zheng J; Benschop JJ; Shales M; Kemmeren P; Greenblatt J; Cagney G; Holstege F; Li H; Krogan NJ
    Mol Syst Biol; 2010 Oct; 6():420. PubMed ID: 20959818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.