These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 26700681)

  • 1. A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT.
    Gao L; Zhu X; Chen G; Ma X; Zhang Y; Khand AA; Shi H; Gu F; Lin H; Chen Y; Zhang H; He L; Tao Q
    Development; 2016 Feb; 143(3):492-503. PubMed ID: 26700681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascl1 represses the mesendoderm induction in Xenopus.
    Min Z; Lin H; Zhu X; Gao L; Khand AA; Tao Q
    Acta Biochim Biophys Sin (Shanghai); 2016 Nov; 48(11):1006-1015. PubMed ID: 27624953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microarray-based identification of VegT targets in Xenopus.
    Taverner NV; Kofron M; Shin Y; Kabitschke C; Gilchrist MJ; Wylie C; Cho KW; Heasman J; Smith JC
    Mech Dev; 2005 Mar; 122(3):333-54. PubMed ID: 15763211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xema, a foxi-class gene expressed in the gastrula stage Xenopus ectoderm, is required for the suppression of mesendoderm.
    Suri C; Haremaki T; Weinstein DC
    Development; 2005 Jun; 132(12):2733-42. PubMed ID: 15901660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascl1 phospho-status regulates neuronal differentiation in a Xenopus developmental model of neuroblastoma.
    Wylie LA; Hardwick LJ; Papkovskaia TD; Thiele CJ; Philpott A
    Dis Model Mech; 2015 May; 8(5):429-41. PubMed ID: 25786414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by Nodal signaling and Eomesodermin.
    Fukuda M; Takahashi S; Haramoto Y; Onuma Y; Kim YJ; Yeo CY; Ishiura S; Asashima M
    Int J Dev Biol; 2010; 54(1):81-92. PubMed ID: 20013651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct regulation of siamois by VegT is required for axis formation in Xenopus embryo.
    Li HY; El Yakoubi W; Shi DL
    Int J Dev Biol; 2015; 59(10-12):443-51. PubMed ID: 26009239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development.
    Casey ES; Tada M; Fairclough L; Wylie CC; Heasman J; Smith JC
    Development; 1999 Oct; 126(19):4193-200. PubMed ID: 10477288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for dual mechanisms of mesoderm establishment in Xenopus embryos.
    Kavka AI; Green JB
    Dev Dyn; 2000 Sep; 219(1):77-83. PubMed ID: 10974673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e.
    Cha SW; McAdams M; Kormish J; Wylie C; Kofron M
    PLoS One; 2012; 7(7):e41782. PubMed ID: 22848601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression.
    Nelson AC; Cutty SJ; Niini M; Stemple DL; Flicek P; Houart C; Bruce AE; Wardle FC
    BMC Biol; 2014 Oct; 12():81. PubMed ID: 25277163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tbx2 is required for the suppression of mesendoderm during early Xenopus development.
    Teegala S; Chauhan R; Lei E; Weinstein DC
    Dev Dyn; 2018 Jul; 247(7):903-913. PubMed ID: 29633424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of mesoderm genes by MEF2D during early Xenopus development.
    Kolpakova A; Katz S; Keren A; Rojtblat A; Bengal E
    PLoS One; 2013; 8(7):e69693. PubMed ID: 23894525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina.
    Mazurier N; Parain K; Parlier D; Pretto S; Hamdache J; Vernier P; Locker M; Bellefroid E; Perron M
    PLoS One; 2014; 9(3):e92113. PubMed ID: 24643195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Xenopus homologue of Down syndrome critical region protein 6 drives dorsoanterior gene expression and embryonic axis formation by antagonising polycomb group proteins.
    Li HY; Grifone R; Saquet A; Carron C; Shi DL
    Development; 2013 Dec; 140(24):4903-13. PubMed ID: 24301465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bistability in a model of mesoderm and anterior mesendoderm specification in Xenopus laevis.
    Middleton AM; King JR; Loose M
    J Theor Biol; 2009 Sep; 260(1):41-55. PubMed ID: 19490918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antagonistic role of XESR1 and XESR5 in mesoderm formation in Xenopus laevis.
    Kinoshita T; Haruta Y; Sakamoto C; Imaoka S
    Int J Dev Biol; 2011; 55(1):25-31. PubMed ID: 21425079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis.
    Xanthos JB; Kofron M; Wylie C; Heasman J
    Development; 2001 Jan; 128(2):167-80. PubMed ID: 11124113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos.
    Xu P; Zhu G; Wang Y; Sun J; Liu X; Chen YG; Meng A
    J Mol Cell Biol; 2014 Aug; 6(4):272-85. PubMed ID: 24924767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VegT activation of the early zygotic gene Xnr5 requires lifting of Tcf-mediated repression in the Xenopus blastula.
    Hilton E; Rex M; Old R
    Mech Dev; 2003 Oct; 120(10):1127-38. PubMed ID: 14568102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.