These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 26700823)

  • 21. Linearly polarized light emission from quantum dots with plasmonic nanoantenna arrays.
    Ren M; Chen M; Wu W; Zhang L; Liu J; Pi B; Zhang X; Li Q; Fan S; Xu J
    Nano Lett; 2015 May; 15(5):2951-7. PubMed ID: 25877386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas.
    Kollmann H; Piao X; Esmann M; Becker SF; Hou D; Huynh C; Kautschor LO; Bösker G; Vieker H; Beyer A; Gölzhäuser A; Park N; Vogelgesang R; Silies M; Lienau C
    Nano Lett; 2014 Aug; 14(8):4778-84. PubMed ID: 25051422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime.
    Kim JY; Kang BJ; Park J; Bahk YM; Kim WT; Rhie J; Jeon H; Rotermund F; Kim DS
    Nano Lett; 2015 Oct; 15(10):6683-8. PubMed ID: 26372787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.
    Grefe SE; Leiva D; Mastel S; Dhuey SD; Cabrini S; Schuck PJ; Abate Y
    Phys Chem Chem Phys; 2013 Nov; 15(43):18944-50. PubMed ID: 24097054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How To Identify Plasmons from the Optical Response of Nanostructures.
    Zhang R; Bursi L; Cox JD; Cui Y; Krauter CM; Alabastri A; Manjavacas A; Calzolari A; Corni S; Molinari E; Carter EA; García de Abajo FJ; Zhang H; Nordlander P
    ACS Nano; 2017 Jul; 11(7):7321-7335. PubMed ID: 28651057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epitaxial Nanoflag Photonics: Semiconductor Nanoemitters Grown with Their Nanoantennas.
    Sorias O; Kelrich A; Gladstone R; Ritter D; Orenstein M
    Nano Lett; 2017 Oct; 17(10):6011-6017. PubMed ID: 28858507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.
    Zhu W; Crozier KB
    Nat Commun; 2014 Oct; 5():5228. PubMed ID: 25311008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas.
    Popp PS; Herrmann JF; Fritz EC; Ravoo BJ; Höppener C
    Small; 2016 Mar; 12(12):1667-75. PubMed ID: 26849412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling spontaneous emission with plasmonic optical patch antennas.
    Belacel C; Habert B; Bigourdan F; Marquier F; Hugonin JP; de Vasconcellos SM; Lafosse X; Coolen L; Schwob C; Javaux C; Dubertret B; Greffet JJ; Senellart P; Maitre A
    Nano Lett; 2013 Apr; 13(4):1516-21. PubMed ID: 23461679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strong coupling between a dipole emitter and localized plasmons: enhancement by sharp silver tips.
    D'Agostino S; Alpeggiani F; Andreani LC
    Opt Express; 2013 Nov; 21(23):27602-10. PubMed ID: 24514278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tuning the Optical Properties of a MoSe
    Petrić MM; Kremser M; Barbone M; Nolinder A; Lyamkina A; Stier AV; Kaniber M; Müller K; Finley JJ
    Nano Lett; 2022 Jan; 22(2):561-569. PubMed ID: 34978824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polarization Multiplexing of Fluorescent Emission Using Multiresonant Plasmonic Antennas.
    De Leo E; Cocina A; Tiwari P; Poulikakos LV; Marqués-Gallego P; le Feber B; Norris DJ; Prins F
    ACS Nano; 2017 Dec; 11(12):12167-12173. PubMed ID: 29161502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport.
    Song P; Nordlander P; Gao S
    J Chem Phys; 2011 Feb; 134(7):074701. PubMed ID: 21341863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers.
    Teperik TV; Nordlander P; Aizpurua J; Borisov AG
    Opt Express; 2013 Nov; 21(22):27306-25. PubMed ID: 24216954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-Dimensional Infrared Spectroscopy with Local Plasmonic Fields of a Trimer Gap-Antenna Array.
    Cohn B; Engelman B; Goldner A; Chuntonov L
    J Phys Chem Lett; 2018 Aug; 9(16):4596-4601. PubMed ID: 30044640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An asymmetric aluminum active quantum plasmonic device.
    Mokkath JH; Henzie J
    Phys Chem Chem Phys; 2020 Jan; 22(3):1416-1421. PubMed ID: 31859295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantized Evolution of the Plasmonic Response in a Stretched Nanorod.
    Rossi TP; Zugarramurdi A; Puska MJ; Nieminen RM
    Phys Rev Lett; 2015 Dec; 115(23):236804. PubMed ID: 26684135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method.
    Kaniber M; Schraml K; Regler A; Bartl J; Glashagen G; Flassig F; Wierzbowski J; Finley JJ
    Sci Rep; 2016 Mar; 6():23203. PubMed ID: 27005986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple-wavelength plasmonic nanoantennas.
    Boriskina SV; Dal Negro L
    Opt Lett; 2010 Feb; 35(4):538-40. PubMed ID: 20160810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.