These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 26700856)
1. Combination of Expert Knowledge and a Genetic Fuzzy Inference System for Automatic Sleep Staging. Liang SF; Kuo CE; Shaw FZ; Chen YH; Hsu CH; Chen JY IEEE Trans Biomed Eng; 2016 Oct; 63(10):2108-18. PubMed ID: 26700856 [TBL] [Abstract][Full Text] [Related]
2. A rule-based automatic sleep staging method. Liang SF; Kuo CE; Hu YH; Cheng YS J Neurosci Methods; 2012 Mar; 205(1):169-76. PubMed ID: 22245090 [TBL] [Abstract][Full Text] [Related]
3. A rule-based automatic sleep staging method. Liang SF; Kuo CE; Hu YH; Cheng YS Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6067-70. PubMed ID: 22255723 [TBL] [Abstract][Full Text] [Related]
4. Automatic sleep staging using multi-dimensional feature extraction and multi-kernel fuzzy support vector machine. Zhang Y; Zhang X; Liu W; Luo Y; Yu E; Zou K; Liu X J Healthc Eng; 2014; 5(4):505-20. PubMed ID: 25516130 [TBL] [Abstract][Full Text] [Related]
5. HyCLASSS: A Hybrid Classifier for Automatic Sleep Stage Scoring. Li X; Cui L; Tao S; Chen J; Zhang X; Zhang GQ IEEE J Biomed Health Inform; 2018 Mar; 22(2):375-385. PubMed ID: 28222004 [TBL] [Abstract][Full Text] [Related]
6. Development of a human-computer collaborative sleep scoring system for polysomnography recordings. Liang SF; Shih YH; Chen PY; Kuo CE PLoS One; 2019; 14(7):e0218948. PubMed ID: 31291270 [TBL] [Abstract][Full Text] [Related]
7. Scoring accuracy of automated sleep staging from a bipolar electroocular recording compared to manual scoring by multiple raters. Stepnowsky C; Levendowski D; Popovic D; Ayappa I; Rapoport DM Sleep Med; 2013 Nov; 14(11):1199-207. PubMed ID: 24047533 [TBL] [Abstract][Full Text] [Related]
8. Insomnia Characterization: From Hypnogram to Graph Spectral Theory. Chaparro-Vargas R; Ahmed B; Wessel N; Penzel T; Cvetkovic D IEEE Trans Biomed Eng; 2016 Oct; 63(10):2211-9. PubMed ID: 26742123 [TBL] [Abstract][Full Text] [Related]
9. An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database. Anderer P; Gruber G; Parapatics S; Woertz M; Miazhynskaia T; Klosch G; Saletu B; Zeitlhofer J; Barbanoj MJ; Danker-Hopfe H; Himanen SL; Kemp B; Penzel T; Grozinger M; Kunz D; Rappelsberger P; Schlogl A; Dorffner G Neuropsychobiology; 2005; 51(3):115-33. PubMed ID: 15838184 [TBL] [Abstract][Full Text] [Related]
10. How many sleep stages do we need for an efficient automatic insomnia diagnosis? Hamida ST; Glos M; Penzel T; Ahmed B Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2431-2434. PubMed ID: 28268816 [TBL] [Abstract][Full Text] [Related]
11. Genetic fuzzy classifier for sleep stage identification. Jo HG; Park JY; Lee CK; An SK; Yoo SK Comput Biol Med; 2010 Jul; 40(7):629-34. PubMed ID: 20541183 [TBL] [Abstract][Full Text] [Related]
12. Multivariate analysis of full-term neonatal polysomnographic data. Gerla V; Paul K; Lhotska L; Krajca V IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):104-10. PubMed ID: 19129029 [TBL] [Abstract][Full Text] [Related]
13. Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines. Lajnef T; Chaibi S; Ruby P; Aguera PE; Eichenlaub JB; Samet M; Kachouri A; Jerbi K J Neurosci Methods; 2015 Jul; 250():94-105. PubMed ID: 25629798 [TBL] [Abstract][Full Text] [Related]
14. Extracting fuzzy rules from polysomnographic recordings for infant sleep classification. Held CM; Heiss JE; Estévez PA; Perez CA; Garrido M; Algarín C; Peirano P IEEE Trans Biomed Eng; 2006 Oct; 53(10):1954-62. PubMed ID: 17019859 [TBL] [Abstract][Full Text] [Related]
15. A continuous evaluation of the awake sleep state using fuzzy reasoning. Alvarez-Estévez D; Fernández-Pastoriza JM; Moret-Bonillo V Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5539-42. PubMed ID: 19964388 [TBL] [Abstract][Full Text] [Related]
16. Automated sleep staging of OSAs based on ICA preprocessing and consolidation of temporal correlations. Raiesdana S Australas Phys Eng Sci Med; 2018 Mar; 41(1):161-176. PubMed ID: 29423558 [TBL] [Abstract][Full Text] [Related]
17. Using off-the-shelf lossy compression for wireless home sleep staging. Lan KC; Chang DW; Kuo CE; Wei MZ; Li YH; Shaw FZ; Liang SF J Neurosci Methods; 2015 May; 246():142-52. PubMed ID: 25791015 [TBL] [Abstract][Full Text] [Related]
18. A novel sleep stage scoring system: Combining expert-based features with the generalized linear model. Gunnarsdottir KM; Gamaldo C; Salas RM; Ewen JB; Allen RP; Hu K; Sarma SV J Sleep Res; 2020 Oct; 29(5):e12991. PubMed ID: 32030843 [TBL] [Abstract][Full Text] [Related]
19. Iterative expert-in-the-loop classification of sleep PSG recordings using a hierarchical clustering. Gerla V; Kremen V; Macas M; Dudysova D; Mladek A; Sos P; Lhotska L J Neurosci Methods; 2019 Apr; 317():61-70. PubMed ID: 30738880 [TBL] [Abstract][Full Text] [Related]
20. A two-step automatic sleep stage classification method with dubious range detection. Sousa T; Cruz A; Khalighi S; Pires G; Nunes U Comput Biol Med; 2015 Apr; 59():42-53. PubMed ID: 25677576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]