These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
503 related articles for article (PubMed ID: 26700871)
41. Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates. Mathewson PD; Moyer-Horner L; Beever EA; Briscoe NJ; Kearney M; Yahn JM; Porter WP Glob Chang Biol; 2017 Mar; 23(3):1048-1064. PubMed ID: 27500587 [TBL] [Abstract][Full Text] [Related]
42. Protected areas act as a buffer against detrimental effects of climate change-Evidence from large-scale, long-term abundance data. Lehikoinen P; Santangeli A; Jaatinen K; Rajasärkkä A; Lehikoinen A Glob Chang Biol; 2019 Jan; 25(1):304-313. PubMed ID: 30393928 [TBL] [Abstract][Full Text] [Related]
43. Modeling a hot, dry future: Substantial range reductions in suitable environment projected under climate change for a semiarid riparian predator guild. Blais BR; Koprowski JL PLoS One; 2024; 19(5):e0302981. PubMed ID: 38709740 [TBL] [Abstract][Full Text] [Related]
44. Using a rule-based envelope model to predict the expansion of habitat suitability within New Zealand for the tick Haemaphysalis longicornis, with future projections based on two climate change scenarios. Lawrence KE; Summers SR; Heath ACG; McFadden AMJ; Pulford DJ; Tait AB; Pomroy WE Vet Parasitol; 2017 Aug; 243():226-234. PubMed ID: 28807298 [TBL] [Abstract][Full Text] [Related]
45. Vulnerability of Subarctic and Arctic breeding birds. Hof AR; Rodríguez-Castañeda G; Allen AM; Jansson R; Nilsson C Ecol Appl; 2017 Jan; 27(1):219-234. PubMed ID: 28052503 [TBL] [Abstract][Full Text] [Related]
47. The future distribution of river fish: The complex interplay of climate and land use changes, species dispersal and movement barriers. Radinger J; Essl F; Hölker F; Horký P; Slavík O; Wolter C Glob Chang Biol; 2017 Nov; 23(11):4970-4986. PubMed ID: 28500795 [TBL] [Abstract][Full Text] [Related]
48. Forecasting the effects of land use scenarios on farmland birds reveal a potential mitigation of climate change impacts. Princé K; Lorrillière R; Barbet-Massin M; Léger F; Jiguet F PLoS One; 2015; 10(2):e0117850. PubMed ID: 25699673 [TBL] [Abstract][Full Text] [Related]
49. An economic evaluation framework for land-use-based conservation policy instruments in a changing climate. Gerling C; Wätzold F Conserv Biol; 2021 Jun; 35(3):824-833. PubMed ID: 32885461 [TBL] [Abstract][Full Text] [Related]
50. Assessing the effectiveness of protected areas for panda conservation under future climate and land use change scenarios. Tang J; Swaisgood RR; Owen MA; Zhao X; Wei W; Hong M; Zhou H; Zhang Z J Environ Manage; 2023 Sep; 342():118319. PubMed ID: 37290306 [TBL] [Abstract][Full Text] [Related]
51. Climate variables are not the dominant predictor of Arctic shorebird distributions. Anderson CM; Fahrig L; Rausch J; Smith PA PLoS One; 2023; 18(5):e0285115. PubMed ID: 37195973 [TBL] [Abstract][Full Text] [Related]
52. Effects of habitat disturbance from residential development on breeding bird communities in riparian corridors. Lussier SM; Enser RW; Dasilva SN; Charpentier M Environ Manage; 2006 Sep; 38(3):504-21. PubMed ID: 16738815 [TBL] [Abstract][Full Text] [Related]
53. The pace of past climate change vs. potential bird distributions and land use in the United States. Bateman BL; Pidgeon AM; Radeloff VC; VanDerWal J; Thogmartin WE; Vavrus SJ; Heglund PJ Glob Chang Biol; 2016 Mar; 22(3):1130-44. PubMed ID: 26691721 [TBL] [Abstract][Full Text] [Related]
54. Predicting the potential suitable habitats of genus Nymphaea in India using MaxEnt modeling. Parveen S; Kaur S; Baishya R; Goel S Environ Monit Assess; 2022 Oct; 194(12):853. PubMed ID: 36203117 [TBL] [Abstract][Full Text] [Related]
55. Incorporating climate science in applications of the US endangered species act for aquatic species. McClure MM; Alexander M; Borggaard D; Boughton D; Crozier L; Griffis R; Jorgensen JC; Lindley ST; Nye J; Rowland MJ; Seney EE; Snover A; Toole C; VAN Houtan K Conserv Biol; 2013 Dec; 27(6):1222-33. PubMed ID: 24299088 [TBL] [Abstract][Full Text] [Related]
56. Comparison of statistical and theoretical habitat models for conservation planning: the benefit of ensemble prediction. Jones-Farrand DT; Fearer TM; Thogmartin WE; Thompson FR; Nelson MD; Tirpak JM Ecol Appl; 2011 Sep; 21(6):2269-82. PubMed ID: 21939060 [TBL] [Abstract][Full Text] [Related]
57. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest. Tremblay JA; Boulanger Y; Cyr D; Taylor AR; Price DT; St-Laurent MH PLoS One; 2018; 13(2):e0191645. PubMed ID: 29414989 [TBL] [Abstract][Full Text] [Related]
58. Impacts of climate change on the distribution of Sichuan snub-nosed monkeys (Rhinopithecus roxellana) in Shennongjia area, China. Luo Z; Zhou S; Yu W; Yu H; Yang J; Tian Y; Zhao M; Wu H Am J Primatol; 2015 Feb; 77(2):135-51. PubMed ID: 25224271 [TBL] [Abstract][Full Text] [Related]
59. Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A. Ruesch AS; Torgersen CE; Lawler JJ; Olden JD; Peterson EE; Volk CJ; Lawrence DJ Conserv Biol; 2012 Oct; 26(5):873-82. PubMed ID: 22827880 [TBL] [Abstract][Full Text] [Related]
60. Vulnerability of ecosystems to climate change moderated by habitat intactness. Eigenbrod F; Gonzalez P; Dash J; Steyl I Glob Chang Biol; 2015 Jan; 21(1):275-86. PubMed ID: 25059822 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]