These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

711 related articles for article (PubMed ID: 26701310)

  • 1. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.
    Wagner JM; Alper HS
    Fungal Genet Biol; 2016 Apr; 89():126-136. PubMed ID: 26701310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-conventional yeast cell factories for sustainable bioprocesses.
    Rebello S; Abraham A; Madhavan A; Sindhu R; Binod P; Karthika Bahuleyan A; Aneesh EM; Pandey A
    FEMS Microbiol Lett; 2018 Nov; 365(21):. PubMed ID: 30212856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.
    Cernak P; Estrela R; Poddar S; Skerker JM; Cheng YF; Carlson AK; Chen B; Glynn VM; Furlan M; Ryan OW; Donnelly MK; Arkin AP; Taylor JW; Cate JHD
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast synthetic biology for the production of recombinant therapeutic proteins.
    Kim H; Yoo SJ; Kang HA
    FEMS Yeast Res; 2015 Feb; 15(1):1-16. PubMed ID: 25130199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects.
    Raschmanová H; Weninger A; Glieder A; Kovar K; Vogl T
    Biotechnol Adv; 2018; 36(3):641-665. PubMed ID: 29331410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis -- a review.
    Gellissen G; Hollenberg CP
    Gene; 1997 Apr; 190(1):87-97. PubMed ID: 9185853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica.
    Müller S; Sandal T; Kamp-Hansen P; Dalbøge H
    Yeast; 1998 Oct; 14(14):1267-83. PubMed ID: 9802206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Advances in metabolic engineering of non-conventional yeasts].
    Su L; Zhang G; Yao Z; Liang P; Dai Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2021 May; 37(5):1659-1676. PubMed ID: 34085448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications.
    Löbs AK; Schwartz C; Wheeldon I
    Synth Syst Biotechnol; 2017 Sep; 2(3):198-207. PubMed ID: 29318200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-conventional yeasts as hosts for heterologous protein production.
    Domínguez A; Fermiñán E; Sánchez M; González FJ; Pérez-Campo FM; García S; Herrero AB; San Vicente A; Cabello J; Prado M; Iglesias FJ; Choupina A; Burguillo FJ; Fernández-Lago L; López MC
    Int Microbiol; 1998 Jun; 1(2):131-42. PubMed ID: 10943351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast systems for the commercial production of heterologous proteins.
    Buckholz RG; Gleeson MA
    Biotechnology (N Y); 1991 Nov; 9(11):1067-72. PubMed ID: 1367623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of synthetic biology tools in Yarrowia lipolytica.
    Cao L; Li J; Yang Z; Hu X; Wang P
    World J Microbiol Biotechnol; 2023 Mar; 39(5):129. PubMed ID: 36944859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison.
    Gellissen G; Kunze G; Gaillardin C; Cregg JM; Berardi E; Veenhuis M; van der Klei I
    FEMS Yeast Res; 2005 Nov; 5(11):1079-96. PubMed ID: 16144775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biosynthesis of natural products by non-conventional yeasts].
    Qian Z; Song L; Liu Q; Gong X; Kang Y; He Z; Long H; Cai M
    Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(6):2284-2312. PubMed ID: 37401595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic Biology Expands the Industrial Potential of Yarrowia lipolytica.
    Markham KA; Alper HS
    Trends Biotechnol; 2018 Oct; 36(10):1085-1095. PubMed ID: 29880228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast Expression Systems: Overview and Recent Advances.
    Baghban R; Farajnia S; Rajabibazl M; Ghasemi Y; Mafi A; Hoseinpoor R; Rahbarnia L; Aria M
    Mol Biotechnol; 2019 May; 61(5):365-384. PubMed ID: 30805909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From yeast genetics to biotechnology.
    Maráz A
    Acta Microbiol Immunol Hung; 2002; 49(4):483-91. PubMed ID: 12512257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in synthetic biology of oleaginous yeast Yarrowia lipolytica for producing non-native chemicals.
    Darvishi F; Ariana M; Marella ER; Borodina I
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5925-5938. PubMed ID: 29808327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in yeast cell surface display toward extended applications in biotechnology.
    Tanaka T; Yamada R; Ogino C; Kondo A
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):577-91. PubMed ID: 22652839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.