These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 26701627)

  • 41. Bio fuel ash in a road construction: impact on soil solution chemistry.
    Thurdin RT; van Hees PA; Bylund D; Lundström US
    Waste Manag; 2006; 26(6):599-613. PubMed ID: 16213132
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Emerging trends in municipal solid waste incineration ashes research: a bibliometric analysis from 1994 to 2018.
    Wong S; Mah AXY; Nordin AH; Nyakuma BB; Ngadi N; Mat R; Amin NAS; Ho WS; Lee TH
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):7757-7784. PubMed ID: 32020458
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.
    Zhang Z; Zhang L; Li A
    Waste Manag; 2015 Apr; 38():185-93. PubMed ID: 25649918
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Possibilities of municipal solid waste incinerator fly ash utilisation.
    Hartmann S; Koval L; Škrobánková H; Matýsek D; Winter F; Purgar A
    Waste Manag Res; 2015 Aug; 33(8):740-7. PubMed ID: 26060198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of MSWI fly ash on acid soil and its effect on the environment.
    Wang T; Liu T; Sun C
    Waste Manag; 2008; 28(10):1977-82. PubMed ID: 17881210
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of ignition process on mineral phase transformation in municipal solid waste incineration (MSWI) fly ash: Implications for estimating loss-on-ignition (LOI).
    Mu Y; Saffarzadeh A; Shimaoka T
    Waste Manag; 2017 Jan; 59():222-228. PubMed ID: 27742231
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators.
    Chou JD; Wey MY; Liang HH; Chang SH
    J Hazard Mater; 2009 Aug; 168(1):197-202. PubMed ID: 19264394
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of large volume injection GC-MS to analysis of organic compounds in the extracts and leachates of municipal solid waste incineration fly ash.
    Korenková E; Matisová E; Slobodník J
    Waste Manag; 2006; 26(9):1005-16. PubMed ID: 16307874
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials-A Review.
    Cho BH; Nam BH; An J; Youn H
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32679661
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Batch test assessment of waste-to-energy combustion residues impacts on precipitate formation in landfill leachate collection systems.
    Cardoso AJ; Levine AD; Rhea LR
    J Air Waste Manag Assoc; 2008 Jan; 58(1):19-26. PubMed ID: 18236791
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polychlorinated biphenyls removal from weathered municipal solid waste incineration fly ash by collector-assisted column flotation.
    Huang Y; Takaoka M; Takeda N; Oshita K
    J Hazard Mater; 2003 Jun; 100(1-3):259-70. PubMed ID: 12835027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification of landfill gas by extracted calcium ions from municipal solid waste incineration fly ash.
    Jang K; Choi WY; Lee D; Park J; Yoo Y
    Sci Total Environ; 2022 Feb; 807(Pt 2):150729. PubMed ID: 34606869
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MSWI boiler fly ashes: magnetic separation for material recovery.
    De Boom A; Degrez M; Hubaux P; Lucion C
    Waste Manag; 2011 Jul; 31(7):1505-13. PubMed ID: 21306886
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of industrial residue combinations on availability of elements.
    Brännvall E; Zamora CB; Sjöblom R; Kumpiene J
    J Hazard Mater; 2014 Jul; 276():171-81. PubMed ID: 24887119
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphorus recovery from municipal solid waste incineration fly ash.
    Kalmykova Y; Fedje KK
    Waste Manag; 2013 Jun; 33(6):1403-10. PubMed ID: 23490361
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of 1,4-dioxane originating from incineration residues produced by incineration of municipal solid waste.
    Fujiwara T; Tamada T; Kurata Y; Ono Y; Kose T; Ono Y; Nishimura F; Ohtoshi K
    Chemosphere; 2008 Mar; 71(5):894-901. PubMed ID: 18191439
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Re-evaluating the TCLP's Role as the Regulatory Driver in the Management of Municipal Solid Waste Incinerator Ash.
    Clavier KA; Liu Y; Intrakamhaeng V; Townsend TG
    Environ Sci Technol; 2019 Jul; 53(14):7964-7973. PubMed ID: 31246437
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metagenomics insights into the effect of co-landfill of incineration fly ash and refuse for bacterial community succession and metabolism pathway of VFAs production.
    Xin M; Sun Y; Li W; Li X; Long Y; Bian R; Wang YN; Wang H; Huang Q
    Sci Total Environ; 2023 Dec; 904():166705. PubMed ID: 37652370
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of chloride from MSWI fly ash.
    Chen WS; Chang FC; Shen YH; Tsai MS; Ko CH
    J Hazard Mater; 2012 Oct; 237-238():116-20. PubMed ID: 22947185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.