BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

690 related articles for article (PubMed ID: 26701782)

  • 21. Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae.
    Tang X; Feng H; Chen WN
    Metab Eng; 2013 Mar; 16():95-102. PubMed ID: 23353549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production.
    Zhang C; Li M; Zhao GR; Lu W
    J Agric Food Chem; 2020 Feb; 68(5):1382-1389. PubMed ID: 31944688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway.
    Kocharin K; Siewers V; Nielsen J
    Biotechnol Bioeng; 2013 Aug; 110(8):2216-24. PubMed ID: 23456608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-controlled in silico gene knockdown strategies to enhance the sustainable production of heterologous terpenoid by Saccharomyces cerevisiae.
    Zhang N; Li X; Zhou Q; Zhang Y; Lv B; Hu B; Li C
    Metab Eng; 2024 May; 83():172-182. PubMed ID: 38648878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rewriting yeast central carbon metabolism for industrial isoprenoid production.
    Meadows AL; Hawkins KM; Tsegaye Y; Antipov E; Kim Y; Raetz L; Dahl RH; Tai A; Mahatdejkul-Meadows T; Xu L; Zhao L; Dasika MS; Murarka A; Lenihan J; Eng D; Leng JS; Liu CL; Wenger JW; Jiang H; Chao L; Westfall P; Lai J; Ganesan S; Jackson P; Mans R; Platt D; Reeves CD; Saija PR; Wichmann G; Holmes VF; Benjamin K; Hill PW; Gardner TS; Tsong AE
    Nature; 2016 Sep; 537(7622):694-697. PubMed ID: 27654918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production.
    Qin N; Li L; Ji X; Li X; Zhang Y; Larsson C; Chen Y; Nielsen J; Liu Z
    ACS Synth Biol; 2020 Dec; 9(12):3236-3244. PubMed ID: 33186034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering a Balanced Acetyl Coenzyme A Metabolism in
    Su B; Lai P; Yang F; Li A; Deng MR; Zhu H
    J Agric Food Chem; 2022 Apr; 70(13):4019-4029. PubMed ID: 35319878
    [No Abstract]   [Full Text] [Related]  

  • 28. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae.
    Zhang Y; Su M; Qin N; Nielsen J; Liu Z
    Microb Cell Fact; 2020 Dec; 19(1):226. PubMed ID: 33302960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of octanoic acid in Saccharomyces cerevisiae: Investigation of new precursor supply engineering strategies and intrinsic limitations.
    Wernig F; Baumann L; Boles E; Oreb M
    Biotechnol Bioeng; 2021 Aug; 118(8):3046-3057. PubMed ID: 34003487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.
    Kwak S; Kim SR; Xu H; Zhang GC; Lane S; Kim H; Jin YS
    Biotechnol Bioeng; 2017 Nov; 114(11):2581-2591. PubMed ID: 28667762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae.
    van Rossum HM; Kozak BU; Niemeijer MS; Duine HJ; Luttik MA; Boer VM; Kötter P; Daran JM; van Maris AJ; Pronk JT
    FEMS Yeast Res; 2016 May; 16(3):. PubMed ID: 26895788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica.
    Liu H; Marsafari M; Wang F; Deng L; Xu P
    Metab Eng; 2019 Dec; 56():60-68. PubMed ID: 31470116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast.
    Nielsen J
    mBio; 2014 Nov; 5(6):e02153. PubMed ID: 25370498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis.
    Fatland BL; Ke J; Anderson MD; Mentzen WI; Cui LW; Allred CC; Johnston JL; Nikolau BJ; Wurtele ES
    Plant Physiol; 2002 Oct; 130(2):740-56. PubMed ID: 12376641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High throughput
    Fina A; Millard P; Albiol J; Ferrer P; Heux S
    Microb Cell Fact; 2023 Jun; 22(1):117. PubMed ID: 37380999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic Engineering of
    Li T; Liu GS; Zhou W; Jiang M; Ren YH; Tao XY; Liu M; Zhao M; Wang FQ; Gao B; Wei DZ
    J Agric Food Chem; 2020 Feb; 68(7):2132-2138. PubMed ID: 31989819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase.
    Kozak BU; van Rossum HM; Niemeijer MS; van Dijk M; Benjamin K; Wu L; Daran JM; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2016 Mar; 16(2):fow006. PubMed ID: 26818854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum.
    Skorokhodova AY; Morzhakova AA; Gulevich AY; Debabov VG
    J Biotechnol; 2015 Nov; 214():33-42. PubMed ID: 26362413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic Engineering of
    Shi W; Li J; Chen Y; Liu X; Chen Y; Guo X; Xiao D
    ACS Synth Biol; 2021 Mar; 10(3):495-504. PubMed ID: 33576609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis.
    Kozak BU; van Rossum HM; Benjamin KR; Wu L; Daran JM; Pronk JT; van Maris AJ
    Metab Eng; 2014 Jan; 21():46-59. PubMed ID: 24269999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.