These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 26701882)
1. Lift enhancement by bats' dynamically changing wingspan. Wang S; Zhang X; He G; Liu T J R Soc Interface; 2015 Dec; 12(113):20150821. PubMed ID: 26701882 [TBL] [Abstract][Full Text] [Related]
2. Bat flight: aerodynamics, kinematics and flight morphology. Hedenström A; Johansson LC J Exp Biol; 2015 Mar; 218(Pt 5):653-63. PubMed ID: 25740899 [TBL] [Abstract][Full Text] [Related]
3. Canonical description of wing kinematics and dynamics for a straight flying insectivorous bat (Hipposideros pratti). Sekhar S; Windes P; Fan X; Tafti DK PLoS One; 2019; 14(6):e0218672. PubMed ID: 31237912 [TBL] [Abstract][Full Text] [Related]
4. A computational investigation of lift generation and power expenditure of Pratt's roundleaf bat (Hipposideros pratti) in forward flight. Windes P; Fan X; Bender M; Tafti DK; Müller R PLoS One; 2018; 13(11):e0207613. PubMed ID: 30485321 [TBL] [Abstract][Full Text] [Related]
5. The mechanisms of lift enhancement in insect flight. Lehmann FO Naturwissenschaften; 2004 Mar; 91(3):101-22. PubMed ID: 15034660 [TBL] [Abstract][Full Text] [Related]
6. A quantitative comparison of bird and bat wakes. Johansson LC; Wolf M; Hedenström A J R Soc Interface; 2010 Jan; 7(42):61-6. PubMed ID: 19324669 [TBL] [Abstract][Full Text] [Related]
7. Leading-edge vortex improves lift in slow-flying bats. Muijres FT; Johansson LC; Barfield R; Wolf M; Spedding GR; Hedenström A Science; 2008 Feb; 319(5867):1250-3. PubMed ID: 18309085 [TBL] [Abstract][Full Text] [Related]
8. Flapping wing aerodynamics: from insects to vertebrates. Chin DD; Lentink D J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773 [TBL] [Abstract][Full Text] [Related]
9. Folding in and out: passive morphing in flapping wings. Stowers AK; Lentink D Bioinspir Biomim; 2015 Mar; 10(2):025001. PubMed ID: 25807583 [TBL] [Abstract][Full Text] [Related]
10. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus). Johansson LC; Håkansson J; Jakobsen L; Hedenström A Sci Rep; 2016 Apr; 6():24886. PubMed ID: 27118083 [TBL] [Abstract][Full Text] [Related]
11. Wake structure and kinematics in two insectivorous bats. Hubel TY; Hristov NI; Swartz SM; Breuer KS Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528775 [TBL] [Abstract][Full Text] [Related]
12. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight. Lee YJ; Lua KB Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443 [TBL] [Abstract][Full Text] [Related]
13. Experimental and numerical studies of beetle-inspired flapping wing in hovering flight. Van Truong T; Le TQ; Park HC; Byun D Bioinspir Biomim; 2017 May; 12(3):036012. PubMed ID: 28513472 [TBL] [Abstract][Full Text] [Related]
14. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight. Wang J; Ren Y; Li C; Dong H Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194 [TBL] [Abstract][Full Text] [Related]
15. Bat flight generates complex aerodynamic tracks. Hedenström A; Johansson LC; Wolf M; von Busse R; Winter Y; Spedding GR Science; 2007 May; 316(5826):894-7. PubMed ID: 17495171 [TBL] [Abstract][Full Text] [Related]
16. Flight in Ground Effect Dramatically Reduces Aerodynamic Costs in Bats. Johansson LC; Jakobsen L; Hedenström A Curr Biol; 2018 Nov; 28(21):3502-3507.e4. PubMed ID: 30344122 [TBL] [Abstract][Full Text] [Related]
17. The dynamics of hovering flight in hummingbirds, insects and bats with implications for aerial robotics. Vejdani HR; Boerma DB; Swartz SM; Breuer KS Bioinspir Biomim; 2018 Nov; 14(1):016003. PubMed ID: 30411710 [TBL] [Abstract][Full Text] [Related]
18. Aerodynamics of manoeuvring flight in brown long-eared bats ( Henningsson P; Jakobsen L; Hedenström A J R Soc Interface; 2018 Nov; 15(148):. PubMed ID: 30404906 [TBL] [Abstract][Full Text] [Related]
19. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method. Tay WB; van Oudheusden BW; Bijl H Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155 [TBL] [Abstract][Full Text] [Related]