These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 26701908)
1. Unravelling druggable signalling networks that control F508del-CFTR proteostasis. Hegde RN; Parashuraman S; Iorio F; Ciciriello F; Capuani F; Carissimo A; Carrella D; Belcastro V; Subramanian A; Bounti L; Persico M; Carlile G; Galietta L; Thomas DY; Di Bernardo D; Luini A Elife; 2015 Dec; 4():. PubMed ID: 26701908 [TBL] [Abstract][Full Text] [Related]
2. Unravelling the Regions of Mutant F508del-CFTR More Susceptible to the Action of Four Cystic Fibrosis Correctors. Amico G; Brandas C; Moran O; Baroni D Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31683989 [TBL] [Abstract][Full Text] [Related]
3. Cystic Fibrosis: Proteostatic correctors of CFTR trafficking and alternative therapeutic targets. Hanrahan JW; Sato Y; Carlile GW; Jansen G; Young JC; Thomas DY Expert Opin Ther Targets; 2019 Aug; 23(8):711-724. PubMed ID: 31169041 [No Abstract] [Full Text] [Related]
4. Proteostasis Regulators in Cystic Fibrosis: Current Development and Future Perspectives. Brusa I; Sondo E; Falchi F; Pedemonte N; Roberti M; Cavalli A J Med Chem; 2022 Apr; 65(7):5212-5243. PubMed ID: 35377645 [TBL] [Abstract][Full Text] [Related]
5. The major cystic fibrosis causing mutation exhibits defective propensity for phosphorylation. Pasyk S; Molinski S; Ahmadi S; Ramjeesingh M; Huan LJ; Chin S; Du K; Yeger H; Taylor P; Moran MF; Bear CE Proteomics; 2015 Jan; 15(2-3):447-61. PubMed ID: 25330774 [TBL] [Abstract][Full Text] [Related]
6. An overview on chemical structures as ΔF508-CFTR correctors. Spanò V; Montalbano A; Carbone A; Scudieri P; Galietta LJV; Barraja P Eur J Med Chem; 2019 Oct; 180():430-448. PubMed ID: 31326599 [TBL] [Abstract][Full Text] [Related]
7. HGF stimulation of Rac1 signaling enhances pharmacological correction of the most prevalent cystic fibrosis mutant F508del-CFTR. Moniz S; Sousa M; Moraes BJ; Mendes AI; Palma M; Barreto C; Fragata JI; Amaral MD; Matos P ACS Chem Biol; 2013 Feb; 8(2):432-42. PubMed ID: 23148778 [TBL] [Abstract][Full Text] [Related]
8. F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review. Yang H; Ma T Expert Opin Ther Pat; 2015; 25(9):991-1002. PubMed ID: 25971311 [TBL] [Abstract][Full Text] [Related]
9. Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy. Hutt DM; Mishra SK; Roth DM; Larsen MB; Angles F; Frizzell RA; Balch WE J Biol Chem; 2018 Aug; 293(35):13682-13695. PubMed ID: 29986884 [TBL] [Abstract][Full Text] [Related]
10. Rescue of F508del-CFTR by RXR motif inactivation triggers proteome modulation associated with the unfolded protein response. Gomes-Alves P; Couto F; Pesquita C; Coelho AV; Penque D Biochim Biophys Acta; 2010 Apr; 1804(4):856-65. PubMed ID: 20044041 [TBL] [Abstract][Full Text] [Related]
11. Targeting CFTR: how to treat cystic fibrosis by CFTR-repairing therapies. Amaral MD Curr Drug Targets; 2011 May; 12(5):683-93. PubMed ID: 21039334 [TBL] [Abstract][Full Text] [Related]
12. Decoding F508del misfolding in cystic fibrosis. Wang XR; Li C Biomolecules; 2014 May; 4(2):498-509. PubMed ID: 24970227 [TBL] [Abstract][Full Text] [Related]
13. Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics. Chung WJ; Goeckeler-Fried JL; Havasi V; Chiang A; Rowe SM; Plyler ZE; Hong JS; Mazur M; Piazza GA; Keeton AB; White EL; Rasmussen L; Weissman AM; Denny RA; Brodsky JL; Sorscher EJ PLoS One; 2016; 11(10):e0163615. PubMed ID: 27732613 [TBL] [Abstract][Full Text] [Related]
14. Roscovitine is a proteostasis regulator that corrects the trafficking defect of F508del-CFTR by a CDK-independent mechanism. Norez C; Vandebrouck C; Bertrand J; Noel S; Durieu E; Oumata N; Galons H; Antigny F; Chatelier A; Bois P; Meijer L; Becq F Br J Pharmacol; 2014 Nov; 171(21):4831-49. PubMed ID: 25065395 [TBL] [Abstract][Full Text] [Related]
15. A chemical corrector modifies the channel function of F508del-CFTR. Kim Chiaw P; Wellhauser L; Huan LJ; Ramjeesingh M; Bear CE Mol Pharmacol; 2010 Sep; 78(3):411-8. PubMed ID: 20501743 [TBL] [Abstract][Full Text] [Related]
16. Distinct proteostasis states drive pharmacologic chaperone susceptibility for cystic fibrosis transmembrane conductance regulator misfolding mutants. McDonald EF; Sabusap CMP; Kim M; Plate L Mol Biol Cell; 2022 Jun; 33(7):ar62. PubMed ID: 35389766 [TBL] [Abstract][Full Text] [Related]
17. Revertant mutants G550E and 4RK rescue cystic fibrosis mutants in the first nucleotide-binding domain of CFTR by different mechanisms. Roxo-Rosa M; Xu Z; Schmidt A; Neto M; Cai Z; Soares CM; Sheppard DN; Amaral MD Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17891-6. PubMed ID: 17098864 [TBL] [Abstract][Full Text] [Related]
18. Correctors of the basic trafficking defect of the mutant F508del-CFTR that causes cystic fibrosis. Birault V; Solari R; Hanrahan J; Thomas DY Curr Opin Chem Biol; 2013 Jun; 17(3):353-60. PubMed ID: 23711435 [TBL] [Abstract][Full Text] [Related]
20. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi. Farinha CM; Matos P; Amaral MD FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]