These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26702145)

  • 21. Distinct temporal phases of microvascular rarefaction in skeletal muscle of obese Zucker rats.
    Frisbee JC; Goodwill AG; Frisbee SJ; Butcher JT; Brock RW; Olfert IM; DeVallance ER; Chantler PD
    Am J Physiol Heart Circ Physiol; 2014 Dec; 307(12):H1714-28. PubMed ID: 25305181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of increased intramuscular perfusion heterogeneity on skeletal muscle microvascular hematocrit in the metabolic syndrome.
    Butcher JT; Stanley SC; Brooks SD; Chantler PD; Wu F; Frisbee JC
    Microcirculation; 2014 Nov; 21(8):677-87. PubMed ID: 24828956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insulin resistance impairs endothelial function but not adrenergic reactivity or vascular structure in fructose-fed rats.
    Romanko OP; Ali MI; Mintz JD; Stepp DW
    Microcirculation; 2009 Jul; 16(5):414-23. PubMed ID: 19382001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vascular function in the metabolic syndrome and the effects on skeletal muscle perfusion: lessons from the obese Zucker rat.
    Frisbee JC; Delp MD
    Essays Biochem; 2006; 42():145-61. PubMed ID: 17144886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of chronic anticholesterol therapy on development of microvascular rarefaction in the metabolic syndrome.
    Goodwill AG; Frisbee SJ; Stapleton PA; James ME; Frisbee JC
    Microcirculation; 2009 Nov; 16(8):667-84. PubMed ID: 19905967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shifted vascular optimization: the emergence of a new arteriolar behaviour with chronic metabolic disease.
    Frisbee JC; Halvorson BD; Lewis MT; Wiseman RW
    Exp Physiol; 2020 Sep; 105(9):1431-1439. PubMed ID: 32045062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High dietary salt alters arteriolar myogenic responsiveness in normotensive and hypertensive rats.
    Nurkiewicz TR; Boegehold MA
    Am J Physiol; 1998 Dec; 275(6):H2095-104. PubMed ID: 9843809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Limitation of arteriolar myogenic activity by local nitric oxide: segment-specific effect of dietary salt.
    Nurkiewicz TR; Boegehold MA
    Am J Physiol; 1999 Nov; 277(5):H1946-55. PubMed ID: 10564151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acute elevations in salt intake and reduced renal mass hypertension compromise arteriolar dilation in rat cremaster muscle.
    Frisbee JC; Lombard JH
    Microvasc Res; 1999 May; 57(3):273-83. PubMed ID: 10329253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chronic elevations in salt intake and reduced renal mass hypertension compromise mechanisms of arteriolar dilation.
    Frisbee JC; Lombard JH
    Microvasc Res; 1998 Nov; 56(3):218-27. PubMed ID: 9828160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impaired Tissue Oxygenation in Metabolic Syndrome Requires Increased Microvascular Perfusion Heterogeneity.
    Mason McClatchey P; Wu F; Olfert IM; Ellis CG; Goldman D; Reusch JEB; Frisbee JC
    J Cardiovasc Transl Res; 2017 Feb; 10(1):69-81. PubMed ID: 28168652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exercise training blunts microvascular rarefaction in the metabolic syndrome.
    Frisbee JC; Samora JB; Peterson J; Bryner R
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2483-92. PubMed ID: 16798823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced renal mass hypertension, but not high salt diet, alters skeletal muscle arteriolar distensibility and myogenic responses.
    Frisbee JC; Lombard JH
    Microvasc Res; 2000 Mar; 59(2):255-64. PubMed ID: 10684731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impaired dilation of skeletal muscle microvessels to reduced oxygen tension in diabetic obese Zucker rats.
    Frisbee JC
    Am J Physiol Heart Circ Physiol; 2001 Oct; 281(4):H1568-74. PubMed ID: 11557545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endothelial dysfunction augments myogenic arteriolar constriction in hypertension.
    Huang A; Sun D; Koller A
    Hypertension; 1993 Dec; 22(6):913-21. PubMed ID: 8244524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced myogenic activation in skeletal muscle arterioles from spontaneously hypertensive rats.
    Falcone JC; Granger HJ; Meininger GA
    Am J Physiol; 1993 Dec; 265(6 Pt 2):H1847-55. PubMed ID: 8285222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduced influence of nitric oxide on arteriolar tone in hypertensive Dahl rats.
    Boegehold MA
    Hypertension; 1992 Mar; 19(3):290-5. PubMed ID: 1548054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decreased supply-dependent oxygen consumption in the skeletal muscle of the spontaneously hypertensive rat during acute hypoxia.
    Smith LM; Barbee RW; Ward KR; Pittman RN
    Shock; 2006 Jun; 25(6):618-24. PubMed ID: 16721270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reinforcement of arteriolar myogenic activity by endogenous ANG II: susceptibility to dietary salt.
    Nurkiewicz TR; Boegehold MA
    Am J Physiol Heart Circ Physiol; 2000 Jul; 279(1):H269-78. PubMed ID: 10899066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of thromboxane A2 in the altered microvascular reactivity in two-kidney, one-clip hypertension.
    Carvalho MH; Fortes ZB; Nigro D; Oliveira MA; Scivoletto R
    Endothelium; 1997; 5(3):167-78. PubMed ID: 9272380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.