These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

599 related articles for article (PubMed ID: 26702440)

  • 41. Patents on Membranes Based on Non-Fluorinated Polymers for Vanadium Redox Flow Batteries.
    Choi SW; Kim TH; Cha SH
    Recent Pat Nanotechnol; 2017 Jul; 11(2):123-129. PubMed ID: 27799030
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploring Carbonyl Chemistry in Non-aqueous Mg Flow Batteries.
    Qin Y; Holguin K; Fehlau D; Luo C; Gao T
    Chem Asian J; 2022 Nov; 17(21):e202200587. PubMed ID: 35994590
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries.
    Zhang L; Qian Y; Feng R; Ding Y; Zu X; Zhang C; Guo X; Wang W; Yu G
    Nat Commun; 2020 Jul; 11(1):3843. PubMed ID: 32737297
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling.
    Milton M; Cheng Q; Yang Y; Nuckolls C; Hernández Sánchez R; Sisto TJ
    Nano Lett; 2017 Dec; 17(12):7859-7863. PubMed ID: 29125302
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microemulsions: Breakthrough Electrolytes for Redox Flow Batteries.
    Barth BA; Imel A; Nelms KM; Goenaga GA; Zawodzinski T
    Front Chem; 2022; 10():831200. PubMed ID: 35308789
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Environmental trade-offs and externalities of electrochemical-based batteries: Quantitative analysis between lithium-ion and vanadium redox flow units.
    Tsai WS; Huang C; Huang CC; Yang CC; Lee M
    J Environ Manage; 2023 Jan; 326(Pt B):116807. PubMed ID: 36436249
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemical Evaluation of Diketopyrrolopyrrole Derivatives for Nonaqueous Redox Flow Batteries.
    Sharma S; Rathod S; Prakash Yadav S; Chakraborty A; Shukla AK; Aetukuri N; Patil S
    Chemistry; 2021 Aug; 27(47):12172-12180. PubMed ID: 34041796
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-Power Near-Neutral Aqueous All Organic Redox Flow Battery Enabled with a Pair of Anionic Redox Species.
    Gao M; Salla M; Song Y; Wang Q
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202208223. PubMed ID: 35997142
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Designing high energy density flow batteries by tuning active-material thermodynamics.
    Pahari SK; Gokoglan TC; Visayas BRB; Woehl J; Golen JA; Howland R; Mayes ML; Agar E; Cappillino PJ
    RSC Adv; 2021 Jan; 11(10):5432-5443. PubMed ID: 35423106
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Redox-Targeting-Based Flow Batteries for Large-Scale Energy Storage.
    Yan R; Wang Q
    Adv Mater; 2018 Nov; 30(47):e1802406. PubMed ID: 30118550
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery.
    Huang H; Feng T; Gan Y; Fang M; Xia Y; Liang C; Tao X; Zhang W
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11842-8. PubMed ID: 25989321
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries.
    Zu X; Zhang L; Qian Y; Zhang C; Yu G
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22163-22170. PubMed ID: 32841494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery.
    Ding Y; Zhao Y; Yu G
    Nano Lett; 2015 Jun; 15(6):4108-13. PubMed ID: 25942365
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O2 battery.
    Zhu YG; Jia C; Yang J; Pan F; Huang Q; Wang Q
    Chem Commun (Camb); 2015 Jun; 51(46):9451-4. PubMed ID: 25960290
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery.
    Yan Y; Robinson SG; Sigman MS; Sanford MS
    J Am Chem Soc; 2019 Sep; 141(38):15301-15306. PubMed ID: 31503480
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metal-Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries.
    Li B; Liu J; Nie Z; Wang W; Reed D; Liu J; McGrail P; Sprenkle V
    Nano Lett; 2016 Jul; 16(7):4335-40. PubMed ID: 27267589
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.
    Duan W; Vemuri RS; Hu D; Yang Z; Wei X
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287515
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Redox-Active 2D Metal-Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity.
    Jiang Q; Xiong P; Liu J; Xie Z; Wang Q; Yang XQ; Hu E; Cao Y; Sun J; Xu Y; Chen L
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5273-5277. PubMed ID: 31893570
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.
    Li N; Wang Y; Tang D; Zhou H
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9271-4. PubMed ID: 26096640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.