These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26702443)

  • 1. Mechanism of strength reduction along the graphenization pathway.
    Gamboa A; Farbos B; Aurel P; Vignoles GL; Leyssale JM
    Sci Adv; 2015 Nov; 1(10):e1501009. PubMed ID: 26702443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic strength and failure behaviors of graphene grain boundaries.
    Zhang J; Zhao J; Lu J
    ACS Nano; 2012 Mar; 6(3):2704-11. PubMed ID: 22369492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudo Hall-Petch strength reduction in polycrystalline graphene.
    Song Z; Artyukhov VI; Yakobson BI; Xu Z
    Nano Lett; 2013 Apr; 13(4):1829-33. PubMed ID: 23528068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crossing grain boundaries in metals by slip bands, cleavage and fatigue cracks.
    Pineau A
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic modeling of mechanical properties of polycrystalline graphene.
    Mortazavi B; Cuniberti G
    Nanotechnology; 2014 May; 25(21):215704. PubMed ID: 24785113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties and failure mechanisms of graphene under a central load.
    Wang S; Yang B; Zhang S; Yuan J; Si Y; Chen H
    Chemphyschem; 2014 Sep; 15(13):2749-55. PubMed ID: 25044132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Annealing and polycrystallinity effects on the thermal conductivity of supported CVD graphene monolayers.
    Raja SN; Osenberg D; Choi K; Park HG; Poulikakos D
    Nanoscale; 2017 Oct; 9(40):15515-15524. PubMed ID: 28980698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the failure load and mechanism of polycrystalline graphene by nanoindentation.
    Sha ZD; Wan Q; Pei QX; Quek SS; Liu ZS; Zhang YW; Shenoy VB
    Sci Rep; 2014 Dec; 4():7437. PubMed ID: 25500732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the crumpling of polycrystalline graphene by molecular dynamics simulation.
    Becton M; Zhang L; Wang X
    Phys Chem Chem Phys; 2015 Mar; 17(9):6297-304. PubMed ID: 25649010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of one-dimensional magnetism in graphene via spontaneous hydrogenation of the grain boundary.
    Yin WJ; Wei SH; Yan Y
    Phys Chem Chem Phys; 2013 Jun; 15(21):8271-5. PubMed ID: 23612720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic, plastic, and fracture mechanisms in graphene materials.
    Daniels C; Horning A; Phillips A; Massote DV; Liang L; Bullard Z; Sumpter BG; Meunier V
    J Phys Condens Matter; 2015 Sep; 27(37):373002. PubMed ID: 26325114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fracture behaviors of monolayer phosphorene with grain boundaries under tension: a molecular dynamics study.
    Guo Y; Qiao C; Wang A; Zhang J; Wang S; Su WS; Jia Y
    Phys Chem Chem Phys; 2016 Jul; 18(30):20562-70. PubMed ID: 27405397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strength and fracture behavior of graphene grain boundaries: effects of temperature, inflection, and symmetry from molecular dynamics.
    Zhang H; Duan Z; Zhang X; Liu C; Zhang J; Zhao J
    Phys Chem Chem Phys; 2013 Jul; 15(28):11794-9. PubMed ID: 23759956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials.
    Han J; Pugno NM; Ryu S
    Nanoscale; 2015 Oct; 7(38):15672-9. PubMed ID: 26350786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Soft and Nanoductile Mechanical Nature of Single and Polycrystalline Organic-Inorganic Hybrid Perovskites for Flexible Functional Devices.
    Yu J; Wang M; Lin S
    ACS Nano; 2016 Dec; 10(12):11044-11057. PubMed ID: 27935297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fracture fingerprint of polycrystalline C
    Bagheri B; Zarghami Dehaghani M; Esmaeili Safa M; Zarrintaj P; Hamed Mashhadzadeh A; Ganjali MR; Saeb MR
    J Mol Graph Model; 2021 Jul; 106():107899. PubMed ID: 33857891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grain size and hydroxyl-coverage dependent tribology of polycrystalline graphene.
    Chen Y; Wang S; Xie L; Zhu P; Li R; Peng Q
    Nanotechnology; 2019 Sep; 30(38):385701. PubMed ID: 31212265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on the mechanical properties and fracture phenomenon of silicon doped graphene by molecular dynamics simulation.
    Rahman MH; Mitra S; Motalab M; Bose P
    RSC Adv; 2020 Aug; 10(52):31318-31332. PubMed ID: 35520677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of irradiation, annealing temperature, and artificial aging on the oxidation, mechanical properties, and fracture mechanisms of UHMWPE.
    Luisetto Y; Wesslen B; Maurer F; Lidgren L
    J Biomed Mater Res A; 2003 Dec; 67(3):908-17. PubMed ID: 14613239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.